scholarly journals ANN-Based Estimation of Low-Latitude Monthly Ocean Latent Heat Flux by Ensemble Satellite and Reanalysis Products

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4773
Author(s):  
Xiaowei Chen ◽  
Yunjun Yao ◽  
Yufu Li ◽  
Yuhu Zhang ◽  
Kun Jia ◽  
...  

Ocean latent heat flux (LHF) is an essential variable for air–sea interactions, which establishes the link between energy balance, water and carbon cycle. The low-latitude ocean is the main heat source of the global ocean and has a great influence on global climate change and energy transmission. Thus, an accuracy estimation of high-resolution ocean LHF over low-latitude area is vital to the understanding of energy and water cycle, and it remains a challenge. To reduce the uncertainties of individual LHF products over low-latitude areas, four machine learning (ML) methods (Artificial Neutral Network (ANN), Random forest (RF), Bayesian Ridge regression and Random Sample Consensus (RANSAC) regression) were applied to estimate low-latitude monthly ocean LHF by using two satellite products (JOFURO-3 and GSSTF-3) and two reanalysis products (MERRA-2 and ERA-I). We validated the estimated ocean LHF using 115 widely distributed buoy sites from three buoy site arrays (TAO, PIRATA and RAMA). The validation results demonstrate that the performance of LHF estimations derived from the ML methods (including ANN, RF, BR and RANSAC) were significantly better than individual LHF products, indicated by R2 increasing by 3.7–46.4%. Among them, the LHF estimation using the ANN method increased the R2 of the four-individual ocean LHF products (ranging from 0.56 to 0.79) to 0.88 and decreased the RMSE (ranging from 19.1 to 37.5) to 11 W m−2. Compared to three other ML methods (RF, BR and RANSAC), ANN method exhibited the best performance according to the validation results. The results of relative uncertainty analysis using the triangle cornered hat (TCH) method show that the ensemble LHF product using ML methods has lower relative uncertainty than individual LHF product in most area. The ANN was employed to implement the mapping of annual average ocean LHF over low-latitude at a spatial resolution of 0.25° during 2003–2007. The ocean LHF fusion products estimated from ANN methods were 10–30 W m−2 lower than those of the four original ocean products (MERRA-2, JOFURO-3, ERA-I and GSSTF-3) and were more similar to observations.

2020 ◽  
Author(s):  
Yiquan Jiang ◽  
Xiu-Qun Yang ◽  
Xiaohong Liu

<p>Aerosols emitted from wildfires could significantly affect global climate through perturbing global radiation balance. In this study, Community Earth System Model with prescribed daily fire aerosol emissions is used to investigate fire aerosols’ impacts on global climate with emphasizing the role of climate feedbacks. The total global fire aerosol radiative effect (RE) is estimated to be -0.78±0.29 W m<sup>-2</sup>, which is mostly from shortwave RE due to aerosol-cloud interactions (REaci, -0.70±0.20 W m<sup>-2</sup>). The associated global-annual mean surface air temperature (SAT) change (∆T) is -0.64±0.16K with the largest reduction in the Arctic regions where the shortwave REaci is strong. Associated with the cooling, the Arctic sea ice is increased, which acts to re-amplify the Arctic cooling through a positive ice-albedo feedback. The fast response (irrelevant to ∆T) tends to decrease surface latent heat flux into atmosphere in the tropics to balance strong atmospheric fire black carbon absorption, which reduces the precipitation in the tropical land regions (southern Africa and South America). The climate feedback processes (associated with ∆T) lead to a significant surface latent heat flux reduction over global ocean areas, which could explain most (~80%) of the global precipitation reduction. The precipitation significantly decreases in deep tropical regions (5°N), but increases in Southern Hemisphere tropical ocean, which is associated with the southward shift of the Inter-Tropical Convergence Zone and the weakening of Southern Hemisphere Hadley cell. Such changes could partly compensate the interhemispheric temperature asymmetry induced by boreal-forest fire aerosol indirect effect, through intensifying the cross-equator atmospheric heat transport.</p>


2020 ◽  
Vol 33 (8) ◽  
pp. 3351-3366 ◽  
Author(s):  
Yiquan Jiang ◽  
Xiu-Qun Yang ◽  
Xiaohong Liu ◽  
Yun Qian ◽  
Kai Zhang ◽  
...  

AbstractAerosols emitted from wildfires could significantly affect global climate through perturbing global radiation balance. In this study, the Community Earth System Model with prescribed daily fire aerosol emissions is used to investigate fire aerosols’ impacts on global climate with emphasis on the role of climate feedbacks. The total global fire aerosol radiative effect (RE) is estimated to be −0.78 ± 0.29 W m−2, which is mostly from shortwave RE due to aerosol–cloud interactions (REaci; −0.70 ± 0.20 W m−2). The associated global annual-mean surface air temperature (SAT) change ∆T is −0.64 ± 0.16 K with the largest reduction in the Arctic regions where the shortwave REaci is strong. Associated with the cooling, the Arctic sea ice is increased, which acts to reamplify the Arctic cooling through a positive ice-albedo feedback. The fast response (irrelevant to ∆T) tends to decrease surface latent heat flux into atmosphere in the tropics to balance strong atmospheric fire black carbon absorption, which reduces the precipitation in the tropical land regions (southern Africa and South America). The climate feedback processes (associated with ∆T) lead to a significant surface latent heat flux reduction over global ocean areas, which could explain most (~80%) of the global precipitation reduction. The precipitation significantly decreases in deep tropical regions (5°N) but increases in the Southern Hemisphere tropical ocean, which is associated with the southward shift of the intertropical convergence zone and the weakening of Southern Hemisphere Hadley cell. Such changes could partly compensate the interhemispheric temperature asymmetry induced by boreal forest fire aerosol indirect effects, through intensifying the cross-equator atmospheric heat transport.


2021 ◽  
Author(s):  
Eli Dennis ◽  
Hugo Berbery

<p>Soil hydro-physical properties are necessary components in regional climate simulation; yet, the parameter inaccuracies introduce uncertainty in the representation of surface water and energy fluxes leading to differences in land-atmosphere interactions, and precipitation. This study examines the uncertainties in the North American atmospheric water cycle that result from the use of different soil datasets. Two soil datasets are considered: STATSGO from the United States Department of Agriculture and GSDE from Beijing Normal University.  Each dataset's dominant soil category allocations differ significantly at the model's resolution. Large regional discrepancies are found in the assignments of soil category, such that, for instance, in the Midwestern US (hereafter, Midwest), there is a systematic reduction in soil grain size allowing the impacts of the differing assignments to project onto regional scales.</p> <p>The two simulations are conducted from June 1–August 31, 2016–2018 using the Weather Research and Forecasting Model coupled with the Community Land Model version 4. In the Midwest, where soil grain size decreases from STATSGO to GSDE, the GSDE simulation experiences reduced mean latent heat flux (–15 W m<sup>-2</sup>), and increased sensible heat flux (+15 W m<sup>-2</sup>).  The boundary layer thermodynamic structure responds to these changes resulting in differences in mean CAPE and CIN. In the GSDE simulation, there is more energy available for convection (CAPE: +200 J kg<sup>-1</sup>) in the Midwest, but it is more difficult to access that energy (CIN: +75 J kg<sup>-1</sup>). Differences arise in dynamic quantities, as well: the vertically-integrated moisture fluxes suggest a reduction in continental cyclonic rotation co-located with the decrease in latent heat flux and, the vertically-integrated moisture flux convergence is also affected. This combination of thermodynamic and dynamic responses culminate in a reduction of precipitation in the Midwest, which can be related to changes in the placement of soil hydro-physical properties.</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 466 ◽  
Author(s):  
Qidong Gao ◽  
Sheng Wang ◽  
Xiaofeng Yang

Latent heat flux (LHF) plays an important role in the global hydrological cycle and is therefore necessary to understand global climate variability. It has been reported that the near-surface specific humidity is a major source of error for satellite-derived LHF. Here, a new empirical model relating multichannel brightness temperatures ( T B ) obtained from the Fengyun-3 (FY-3C) microwave radiometer and sea surface air specific humidity ( Q a ) is proposed. It is based on the relationship between T B , Q a , sea surface temperature (SST), and water vapor scale height. Compared with in situ data, the new satellite-derived Q a and LHF both exhibit better statistical results than previous estimates. For Q a , the bias, root mean square difference (RMSD), and the correlation coefficient (R2) between satellite and buoy in the mid-latitude region are 0.08 g/kg, 1.76 g/kg, and 0.92, respectively. For LHF, the bias, RMSD, and R2 are 2.40 W/m2, 34.24 W/m2, and 0.87, respectively. The satellite-derived Q a are also compared with National Oceanic and Atmospheric Administration (NOAA) Cooperative Institute for Research in Environmental Sciences (CIRES) humidity datasets, with a bias, RMSD, and R2 of 0.02 g/kg, 1.02 g/kg, and 0.98, respectively. The proposed method can also be extended in the future to observations from other space-borne microwave radiometers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hiroyuki Tomita ◽  
Kunio Kutsuwada ◽  
Masahisa Kubota ◽  
Tsutomu Hihara

The reliability of surface net heat flux data obtained from the latest satellite-based estimation [the third-generation Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO3, V1.1)] was investigated. Three metrics were utilized: (1) the global long-term (30 years) mean for 1988–2017, (2) the local accuracy evaluation based on comparison with observations recorded at buoys located at 11 global oceanic points with varying climatological characteristics, and (3) the physical consistency with the freshwater balance related to the global water cycle. The globally averaged value of the surface net heat flux of J-OFURO3 was −22.2 W m−2, which is largely imbalanced to heat the ocean surface. This imbalance was due to the turbulent heat flux being smaller than the net downward surface radiation. On the other hand, compared with the local buoy observations, the average difference was −5.8 W m−2, indicating good agreement. These results indicate a paradox of the global surface net heat flux. In relation to the global water cycle, the balance between surface latent heat flux (ocean evaporation) and precipitation was estimated to be almost 0 when river runoff from the land was taken into consideration. The reliability of the estimation of the latent heat flux was reconciled by two different methods. Systematic ocean-heating biases by surface sensible heat flux (SHF) and long wave radiation were identified. The bias in the SHF was globally persistent and especially large in the mid- and high latitudes. The correction of the bias has an impact on improving the global mean net heat flux by +5.5 W m−2. Furthermore, since J-OFURO3 SHF has low data coverage in high-latitudes areas containing sea ice, its impact on global net heat flux was assessed using the latest atmospheric reanalysis product. When including the sea ice region, the globally averaged value of SHF was approximately 1.4 times larger. In addition to the bias correction mentioned above, when assuming that the global ocean average of J3 SHF is 1.4 times larger, the net heat flux value changes to the improved value (−11.3 W m−2), which is approximately half the original value (−22.2 W m−2).


2007 ◽  
Vol 88 (4) ◽  
pp. 527-540 ◽  
Author(s):  
Lisan Yu ◽  
Robert A. Weller

A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset. The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Positive linear trends appeared on a global scale, and were most significant over the tropical Indian and western Pacific warm pool and the boundary current regions. The increase in latent heat flux was in concert with the rise of sea surface temperature, suggesting a response of the atmosphere to oceanic forcing.


2021 ◽  
Author(s):  
Lucas Emilio B. Hoeltgebaum ◽  
Nelson Luís Dias ◽  
Marcelo Azevedo Costa

Sign in / Sign up

Export Citation Format

Share Document