scholarly journals Wearable Sensors Incorporating Compensatory Reserve Measurement for Advancing Physiological Monitoring in Critically Injured Trauma Patients

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6413
Author(s):  
Victor A. Convertino ◽  
Steven G. Schauer ◽  
Erik K. Weitzel ◽  
Sylvain Cardin ◽  
Mark E. Stackle ◽  
...  

Vital signs historically served as the primary method to triage patients and resources for trauma and emergency care, but have failed to provide clinically-meaningful predictive information about patient clinical status. In this review, a framework is presented that focuses on potential wearable sensor technologies that can harness necessary electronic physiological signal integration with a current state-of-the-art predictive machine-learning algorithm that provides early clinical assessment of hypovolemia status to impact patient outcome. The ability to study the physiology of hemorrhage using a human model of progressive central hypovolemia led to the development of a novel machine-learning algorithm known as the compensatory reserve measurement (CRM). Greater sensitivity, specificity, and diagnostic accuracy to detect hemorrhage and onset of decompensated shock has been demonstrated by the CRM when compared to all standard vital signs and hemodynamic variables. The development of CRM revealed that continuous measurements of changes in arterial waveform features represented the most integrated signal of physiological compensation for conditions of reduced systemic oxygen delivery. In this review, detailed analysis of sensor technologies that include photoplethysmography, tonometry, ultrasound-based blood pressure, and cardiogenic vibration are identified as potential candidates for harnessing arterial waveform analog features required for real-time calculation of CRM. The integration of wearable sensors with the CRM algorithm provides a potentially powerful medical monitoring advancement to save civilian and military lives in emergency medical settings.

2019 ◽  
Vol 109 ◽  
pp. 79-84 ◽  
Author(s):  
Christopher Barton ◽  
Uli Chettipally ◽  
Yifan Zhou ◽  
Zirui Jiang ◽  
Anna Lynn-Palevsky ◽  
...  

Author(s):  
Ward H. van der Ven ◽  
Lotte E. Terwindt ◽  
Nurseda Risvanoglu ◽  
Evy L. K. Ie ◽  
Marije Wijnberge ◽  
...  

AbstractThe Hypotension Prediction Index (HPI) is a commercially available machine-learning algorithm that provides warnings for impending hypotension, based on real-time arterial waveform analysis. The HPI was developed with arterial waveform data of surgical and intensive care unit (ICU) patients, but has never been externally validated in the latter group. In this study, we evaluated diagnostic ability of the HPI with invasively collected arterial blood pressure data in 41 patients with COVID-19 admitted to the ICU for mechanical ventilation. Predictive ability was evaluated at HPI thresholds from 0 to 100, at incremental intervals of 5. After exceeding the studied threshold, the next 20 min were screened for positive (mean arterial pressure (MAP) < 65 mmHg for at least 1 min) or negative (absence of MAP < 65 mmHg for at least 1 min) events. Subsequently, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and time to event were determined for every threshold. Almost all patients (93%) experienced at least one hypotensive event. Median number of events was 21 [7–54] and time spent in hypotension was 114 min [20–303]. The optimal threshold was 90, with a sensitivity of 0.91 (95% confidence interval 0.81–0.98), specificity of 0.87 (0.81–0.92), PPV of 0.69 (0.61–0.77), NPV of 0.99 (0.97–1.00), and median time to event of 3.93 min (3.72–4.15). Discrimination ability of the HPI was excellent, with an area under the curve of 0.95 (0.93–0.97). This validation study shows that the HPI correctly predicts hypotension in mechanically ventilated COVID-19 patients in the ICU, and provides a basis for future studies to assess whether hypotension can be reduced in ICU patients using this algorithm.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


Sign in / Sign up

Export Citation Format

Share Document