scholarly journals Recognition of Cosmic Ray Images Obtained from CMOS Sensors Used in Mobile Phones by Approximation of Uncertain Class Assignment with Deep Convolutional Neural Network

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1963
Author(s):  
Tomasz Hachaj ◽  
Łukasz Bibrzycki ◽  
Marcin Piekarczyk

In this paper, we describe the convolutional neural network (CNN)-based approach to the problems of categorization and artefact reduction of cosmic ray images obtained from CMOS sensors used in mobile phones. As artefacts, we understand all images that cannot be attributed to particles’ passage through sensor but rather result from the deficiencies of the registration procedure. The proposed deep neural network is composed of a pretrained CNN and neural-network-based approximator, which models the uncertainty of image class assignment. The network was trained using a transfer learning approach with a mean squared error loss function. We evaluated our approach on a data set containing 2350 images labelled by five judges. The most accurate results were obtained using the VGG16 CNN architecture; the recognition rate (RR) was 85.79% ± 2.24% with a mean squared error (MSE) of 0.03 ± 0.00. After applying the proposed threshold scheme to eliminate less probable class assignments, we obtained a RR of 96.95% ± 1.38% for a threshold of 0.9, which left about 62.60% ± 2.88% of the overall data. Importantly, the research and results presented in this paper are part of the pioneering field of the application of citizen science in the recognition of cosmic rays and, to the best of our knowledge, this analysis is performed on the largest freely available cosmic ray hit dataset.

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 862
Author(s):  
Tong Liu ◽  
Zheng Wang

We present a deep-learning package named HiCNN2 to learn the mapping between low-resolution and high-resolution Hi-C (a technique for capturing genome-wide chromatin interactions) data, which can enhance the resolution of Hi-C interaction matrices. The HiCNN2 package includes three methods each with a different deep learning architecture: HiCNN2-1 is based on one single convolutional neural network (ConvNet); HiCNN2-2 consists of an ensemble of two different ConvNets; and HiCNN2-3 is an ensemble of three different ConvNets. Our evaluation results indicate that HiCNN2-enhanced high-resolution Hi-C data achieve smaller mean squared error and higher Pearson’s correlation coefficients with experimental high-resolution Hi-C data compared with existing methods HiCPlus and HiCNN. Moreover, all of the three HiCNN2 methods can recover more significant interactions detected by Fit-Hi-C compared to HiCPlus and HiCNN. Based on our evaluation results, we would recommend using HiCNN2-1 and HiCNN2-3 if recovering more significant interactions from Hi-C data is of interest, and HiCNN2-2 and HiCNN if the goal is to achieve higher reproducibility scores between the enhanced Hi-C matrix and the real high-resolution Hi-C matrix.


2016 ◽  
Vol 78 (12-3) ◽  
Author(s):  
Saadi Ahmad Kamaruddin ◽  
Nor Azura Md Ghani ◽  
Norazan Mohamed Ramli

Neurocomputing have been adapted in time series forecasting arena, but the presence of outliers that usually occur in data time series may be harmful to the data network training. This is because the ability to automatically find out any patterns without prior assumptions and loss of generality. In theory, the most common training algorithm for Backpropagation algorithms leans on reducing ordinary least squares estimator (OLS) or more specifically, the mean squared error (MSE). However, this algorithm is not fully robust when outliers exist in training data, and it will lead to false forecast future value. Therefore, in this paper, we present a new algorithm that manipulate algorithms firefly on least median squares estimator (FFA-LMedS) for  Backpropagation neural network nonlinear autoregressive (BPNN-NAR) and Backpropagation neural network nonlinear autoregressive moving (BPNN-NARMA) models to reduce the impact of outliers in time series data. The performances of the proposed enhanced models with comparison to the existing enhanced models using M-estimators, Iterative LMedS (ILMedS) and Particle Swarm Optimization on LMedS (PSO-LMedS) are done based on root mean squared error (RMSE) values which is the main highlight of this paper. In the meanwhile, the real-industrial monthly data of Malaysian Aggregate cost indices data set from January 1980 to December 2012 (base year 1980=100) with different degree of outliers problem is adapted in this research. At the end of this paper, it was found that the enhanced BPNN-NARMA models using M-estimators, ILMedS and FFA-LMedS performed very well with RMSE values almost zero errors. It is expected that the findings would assist the respected authorities involve in Malaysian construction projects to overcome cost overruns.


2011 ◽  
Vol 110-116 ◽  
pp. 2976-2982 ◽  
Author(s):  
Sina Eskandari ◽  
Behrooz Arezoo ◽  
Amir Abdullah

Thermal errors of CNC machines have significant effects on precision of a workpiece. One of the approaches to reduce these errors is modeling and on-line compensating them. In this study, thermal errors of an axis of the machine are modeled by means of artificial neural networks along with fuzzy logic. Models are created using experimental data. In neural networks modeling, MLP type which has 2 hidden layers is chosen and it is trained by backpropagation algorithm. Finally, the model is validated with the aid of calculating mean squared error and correlation coefficients between outputs of the model and a checking data set. On the other hand, an adaptive neuro-fuzzy inference system is utilized in fuzzy modeling which uses neural network to develop membership functions as fuzzifiers and defuzzifiers. This network is trained by hybrid algorithm. At the end, model validation is done by mean squared error like previous method. The results show that the errors of both modeling techniques are acceptable and models can predict thermal errors reliably.


2021 ◽  
Author(s):  
Amit Kumar ◽  
Nagabhushana Rao Vadlamani

Abstract In this paper, we compare the efficacy of two neural network based models: Convolutional Neural Network (CNN) and Deep Neural Networks (DNN) to inverse design the airfoil shapes. Given the pressure distribution over the airfoil in pictorial (for CNN) or numerical form (for DNN), the trained neural networks predict the airfoil shapes. During the training phase, the critical hyper-parameters of both the models, namely — learning rate, number of epochs and batch size, are tuned to reduce the mean squared error (MSE) and increase the prediction accuracy. The training parameters in DNN are an order of magnitude lower than that of CNN and hence the DNN model is found to be ≈ 7× faster than the CNN. In addition, the accuracy of DNN is also observed to be superior to that of CNN. After processing the raw airfoil shapes, the smoothed airfoils are shown to yield the target pressure distribution thereby validating the framework.


2019 ◽  
Vol 2 (3) ◽  
pp. 1189-1195
Author(s):  
Omar Abdulwahhab Othman ◽  
Sait Ali Uymaz ◽  
Betül Uzbaş

In this paper, automatic black and white image colorization method has been proposed. The study is based on the best-known deep learning algorithm CNN (Convolutional neural network). The Model that developed taking the input in gray scale and predict the color of image based on the dataset that trained on it. The color space used in this work is Lab Color space the model takes the L channel as the input and the ab channels as the output. The Image Net dataset used and random selected image have been used to construct a mini dataset of images that contains 39,604 images splitted into 80% training and 20% testing. The proposed method has been tested and evaluated on samples images with Mean-squared error and peak signal to noise ratio and reached an average of MSE= 51.36 and PSNR= 31.


Author(s):  
Hanafi Hanafi ◽  
Nanna Suryana ◽  
Abdul Samad Hasan Basari

Several efforts have been conducted to handle sparse product rating in e-commerce recommender system. One of them is the inclusion of texts such as product review, abstract, product description, and synopsis. Later, it converted to become rating value. Previous researches have tried to extract these texts based on bag of word and word order. However, this approach was given misunderstanding of text description of products. This research proposes a novel Dynamic Convolutional Neural Network (DCNN) to improve meaning accuracy of product review on a collaborative filtering recommender system. DCNN was used to eliminate item sparse data on text product review while the accuracy level was measured by Root Mean Squared Error (RMSE). The result shows that DCNN has outperformed the other previous methods.


2019 ◽  
Vol 8 (2) ◽  
pp. 151-162
Author(s):  
Fauzi Insan Estiko ◽  
Wahyuddin Wahyuddin

This study aims to compare forecast performance of Neural Network (NN) to ARIMA in the case of Indonesia’s inflation and to find if there is any interesting trend in Indonesia’s inflation. We use year-on-year monthly Indonesia’s inflation data from 2006:12 to 2018:12 released by Bank Indonesia (BI) and the Indonesian Central Bureau of Statistics (CBS). We divide the series into 3 data series to capture the trend in the inflation (i.e DS1, DS2 and DS3). The data set 1 (DS1) covers data  from 2006:12 to 2014:08, DS2 from 2006:12 to 2018:12, dan DS3 from 2010:12 to 2018:12. The series is then  processed using the  standard ARIMA method and NN model. We found that the NN model outperforms the ARIMA model in forecasting inflation for each respective series by analysing  its Root Mean Squared Error (RMSE). We also found that short term lagged-inflation (backward-looking) variable has lesser effect on inflation compared to the more recent series.


2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document