scholarly journals Dynamic convolutional neural network for eliminating item sparse data on recommender system

Author(s):  
Hanafi Hanafi ◽  
Nanna Suryana ◽  
Abdul Samad Hasan Basari

Several efforts have been conducted to handle sparse product rating in e-commerce recommender system. One of them is the inclusion of texts such as product review, abstract, product description, and synopsis. Later, it converted to become rating value. Previous researches have tried to extract these texts based on bag of word and word order. However, this approach was given misunderstanding of text description of products. This research proposes a novel Dynamic Convolutional Neural Network (DCNN) to improve meaning accuracy of product review on a collaborative filtering recommender system. DCNN was used to eliminate item sparse data on text product review while the accuracy level was measured by Root Mean Squared Error (RMSE). The result shows that DCNN has outperformed the other previous methods.

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 862
Author(s):  
Tong Liu ◽  
Zheng Wang

We present a deep-learning package named HiCNN2 to learn the mapping between low-resolution and high-resolution Hi-C (a technique for capturing genome-wide chromatin interactions) data, which can enhance the resolution of Hi-C interaction matrices. The HiCNN2 package includes three methods each with a different deep learning architecture: HiCNN2-1 is based on one single convolutional neural network (ConvNet); HiCNN2-2 consists of an ensemble of two different ConvNets; and HiCNN2-3 is an ensemble of three different ConvNets. Our evaluation results indicate that HiCNN2-enhanced high-resolution Hi-C data achieve smaller mean squared error and higher Pearson’s correlation coefficients with experimental high-resolution Hi-C data compared with existing methods HiCPlus and HiCNN. Moreover, all of the three HiCNN2 methods can recover more significant interactions detected by Fit-Hi-C compared to HiCPlus and HiCNN. Based on our evaluation results, we would recommend using HiCNN2-1 and HiCNN2-3 if recovering more significant interactions from Hi-C data is of interest, and HiCNN2-2 and HiCNN if the goal is to achieve higher reproducibility scores between the enhanced Hi-C matrix and the real high-resolution Hi-C matrix.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1963
Author(s):  
Tomasz Hachaj ◽  
Łukasz Bibrzycki ◽  
Marcin Piekarczyk

In this paper, we describe the convolutional neural network (CNN)-based approach to the problems of categorization and artefact reduction of cosmic ray images obtained from CMOS sensors used in mobile phones. As artefacts, we understand all images that cannot be attributed to particles’ passage through sensor but rather result from the deficiencies of the registration procedure. The proposed deep neural network is composed of a pretrained CNN and neural-network-based approximator, which models the uncertainty of image class assignment. The network was trained using a transfer learning approach with a mean squared error loss function. We evaluated our approach on a data set containing 2350 images labelled by five judges. The most accurate results were obtained using the VGG16 CNN architecture; the recognition rate (RR) was 85.79% ± 2.24% with a mean squared error (MSE) of 0.03 ± 0.00. After applying the proposed threshold scheme to eliminate less probable class assignments, we obtained a RR of 96.95% ± 1.38% for a threshold of 0.9, which left about 62.60% ± 2.88% of the overall data. Importantly, the research and results presented in this paper are part of the pioneering field of the application of citizen science in the recognition of cosmic rays and, to the best of our knowledge, this analysis is performed on the largest freely available cosmic ray hit dataset.


2021 ◽  
Author(s):  
Amit Kumar ◽  
Nagabhushana Rao Vadlamani

Abstract In this paper, we compare the efficacy of two neural network based models: Convolutional Neural Network (CNN) and Deep Neural Networks (DNN) to inverse design the airfoil shapes. Given the pressure distribution over the airfoil in pictorial (for CNN) or numerical form (for DNN), the trained neural networks predict the airfoil shapes. During the training phase, the critical hyper-parameters of both the models, namely — learning rate, number of epochs and batch size, are tuned to reduce the mean squared error (MSE) and increase the prediction accuracy. The training parameters in DNN are an order of magnitude lower than that of CNN and hence the DNN model is found to be ≈ 7× faster than the CNN. In addition, the accuracy of DNN is also observed to be superior to that of CNN. After processing the raw airfoil shapes, the smoothed airfoils are shown to yield the target pressure distribution thereby validating the framework.


2019 ◽  
Vol 2 (3) ◽  
pp. 1189-1195
Author(s):  
Omar Abdulwahhab Othman ◽  
Sait Ali Uymaz ◽  
Betül Uzbaş

In this paper, automatic black and white image colorization method has been proposed. The study is based on the best-known deep learning algorithm CNN (Convolutional neural network). The Model that developed taking the input in gray scale and predict the color of image based on the dataset that trained on it. The color space used in this work is Lab Color space the model takes the L channel as the input and the ab channels as the output. The Image Net dataset used and random selected image have been used to construct a mini dataset of images that contains 39,604 images splitted into 80% training and 20% testing. The proposed method has been tested and evaluated on samples images with Mean-squared error and peak signal to noise ratio and reached an average of MSE= 51.36 and PSNR= 31.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammadsadegh Vahidi Farashah ◽  
Akbar Etebarian ◽  
Reza Azmi ◽  
Reza Ebrahimzadeh Dastjerdi

AbstractOver the past decade, recommendation systems have been one of the most sought after by various researchers. Basket analysis of online systems’ customers and recommending attractive products (movies) to them is very important. Providing an attractive and favorite movie to the customer will increase the sales rate and ultimately improve the system. Various methods have been proposed so far to analyze customer baskets and offer entertaining movies but each of the proposed methods has challenges, such as lack of accuracy and high error of recommendations. In this paper, a link prediction-based method is used to meet the challenges of other methods. The proposed method in this paper consists of four phases: (1) Running the CBRS that in this phase, all users are clustered using Density-based spatial clustering of applications with noise algorithm (DBScan), and classification of new users using Deep Neural Network (DNN) algorithm. (2) Collaborative Recommender System (CRS) Based on Hybrid Similarity Criterion through which similarities are calculated based on a threshold (lambda) between the new user and the users in the selected category. Similarity criteria are determined based on age, gender, and occupation. The collaborative recommender system extracts users who are the most similar to the new user. Then, the higher-rated movie services are suggested to the new user based on the adjacency matrix. (3) Running improved Friendlink algorithm on the dataset to calculate the similarity between users who are connected through the link. (4) This phase is related to the combination of collaborative recommender system’s output and improved Friendlink algorithm. The results show that the Mean Squared Error (MSE) of the proposed model has decreased respectively 8.59%, 8.67%, 8.45% and 8.15% compared to the basic models such as Naive Bayes, multi-attribute decision tree and randomized algorithm. In addition, Mean Absolute Error (MAE) of the proposed method decreased by 4.5% compared to SVD and approximately 4.4% compared to ApproSVD and Root Mean Squared Error (RMSE) of the proposed method decreased by 6.05 % compared to SVD and approximately 6.02 % compared to ApproSVD.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Siyuan Zhao ◽  
Zhiwei Xu ◽  
Limin Liu ◽  
Mengjie Guo ◽  
Jing Yun

Convolutional neural network (CNN) has revolutionized the field of natural language processing, which is considerably efficient at semantics analysis that underlies difficult natural language processing problems in a variety of domains. The deceptive opinion detection is an important application of the existing CNN models. The detection mechanism based on CNN models has better self-adaptability and can effectively identify all kinds of deceptive opinions. Online opinions are quite short, varying in their types and content. In order to effectively identify deceptive opinions, we need to comprehensively study the characteristics of deceptive opinions and explore novel characteristics besides the textual semantics and emotional polarity that have been widely used in text analysis. In this paper, we optimize the convolutional neural network model by embedding the word order characteristics in its convolution layer and pooling layer, which makes convolutional neural network more suitable for short text classification and deceptive opinions detection. The TensorFlow-based experiments demonstrate that the proposed detection mechanism achieves more accurate deceptive opinion detection results.


2018 ◽  
Vol 4 (1) ◽  
pp. 24
Author(s):  
Imam Halimi ◽  
Wahyu Andhyka Kusuma

Investasi saham merupakan hal yang tidak asing didengar maupun dilakukan. Ada berbagai macam saham di Indonesia, salah satunya adalah Indeks Harga Saham Gabungan (IHSG) atau dalam bahasa inggris disebut Indonesia Composite Index, ICI, atau IDX Composite. IHSG merupakan parameter penting yang dipertimbangkan pada saat akan melakukan investasi mengingat IHSG adalah saham gabungan. Penelitian ini bertujuan memprediksi pergerakan IHSG dengan teknik data mining menggunakan algoritma neural network dan dibandingkan dengan algoritma linear regression, yang dapat dijadikan acuan investor saat akan melakukan investasi. Hasil dari penelitian ini berupa nilai Root Mean Squared Error (RMSE) serta label tambahan angka hasil prediksi yang didapatkan setelah dilakukan validasi menggunakan sliding windows validation dengan hasil paling baik yaitu pada pengujian yang menggunakan algoritma neural network yang menggunakan windowing yaitu sebesar 37,786 dan pada pengujian yang tidak menggunakan windowing sebesar 13,597 dan untuk pengujian algoritma linear regression yang menggunakan windowing yaitu sebesar 35,026 dan pengujian yang tidak menggunakan windowing sebesar 12,657. Setelah dilakukan pengujian T-Test menunjukan bahwa pengujian menggunakan neural network yang dibandingkan dengan linear regression memiliki hasil yang tidak signifikan dengan nilai T-Test untuk pengujian dengan windowing dan tanpa windowing hasilnya sama, yaitu sebesar 1,000.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Amila T. Peiris ◽  
Jeevani Jayasinghe ◽  
Upaka Rathnayake

Wind power, as a renewable energy resource, has taken much attention of the energy authorities in many countries, as it is used as one of the major energy sources to satisfy the ever-increasing energy demand. However, careful attention is needed in identifying the wind power potential in a particular area due to climate changes. In this sense, forecasting both wind power generation and wind power potential is essential. This paper develops artificial neural network (ANN) models to forecast wind power generation in “Pawan Danawi”, a functioning wind farm in Sri Lanka. Wind speed, wind direction, and ambient temperature of the area were used as the independent variable matrices of the developed ANN models, while the generated wind power was used as the dependent variable. The models were tested with three training algorithms, namely, Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) training algorithms. In addition, the model was calibrated for five validation percentages (5% to 25% in 5% intervals) under each algorithm to identify the best training algorithm with the most suitable training and validation percentages. Mean squared error (MSE), coefficient of correlation (R), root mean squared error ratio (RSR), Nash number, and BIAS were used to evaluate the performance of the developed ANN models. Results revealed that all three training algorithms produce acceptable predictions for the power generation in the Pawan Danawi wind farm with R > 0.91, MSE < 0.22, and BIAS < 1. Among them, the LM training algorithm at 70% of training and 5% of validation percentages produces the best forecasting results. The developed models can be effectively used in the prediction of wind power at the Pawan Danawi wind farm. In addition, the models can be used with the projected climatic scenarios in predicting the future wind power harvest. Furthermore, the models can acceptably be used in similar environmental and climatic conditions to identify the wind power potential of the area.


Sign in / Sign up

Export Citation Format

Share Document