scholarly journals Development of Electrochemical DNA Biosensor for Equine Hindgut Acidosis Detection

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2319
Author(s):  
Joshua Davies ◽  
Carol Thomas ◽  
Mohammad Rizwan ◽  
Christopher Gwenin

The pH drop in the hindgut of the horse is caused by lactic acid-producing bacteria which are abundant when a horse’s feeding regime is excessively carbohydrate rich. This drop in pH below six causes hindgut acidosis and may lead to laminitis. Lactic acid-producing bacteria Streptococcus equinus and Mitsuokella jalaludinii have been found to produce high amounts of L-lactate and D-lactate, respectively. Early detection of increased levels of these bacteria could allow the horse owner to tailor the horse’s diet to avoid hindgut acidosis and subsequent laminitis. Therefore, 16s ribosomal ribonucleic acid (rRNA) sequences were identified and modified to obtain target single stranded deoxyribonucleic acid (DNA) from these bacteria. Complementary single stranded DNAs were designed from the modified target sequences to form capture probes. Binding between capture probe and target single stranded deoxyribonucleic acid (ssDNA) in solution has been studied by gel electrophoresis. Among pairs of different capture probes and target single stranded DNA, hybridization of Streptococcus equinus capture probe 1 (SECP1) and Streptococcus equinus target 1 (SET1) was portrayed as gel electrophoresis. Adsorptive stripping voltammetry was utilized to study the binding of thiol modified SECP1 over gold on glass substrates and these studies showed a consistent binding signal of thiol modified SECP1 and their hybridization with SET1 over the gold working electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to examine the binding of thiol modified SECP1 on the gold working electrode and hybridization of thiol modified SECP1 with the target single stranded DNA. Both demonstrated the gold working electrode surface was modified with a capture probe layer and hybridization of the thiol bound ssDNA probe with target DNA was indicated. Therefore, the proposed electrochemical biosensor has the potential to be used for the detection of the non-synthetic bacterial DNA target responsible for equine hindgut acidosis.

Author(s):  
Hayette Faid

AbstractIn this work, Zn-Ni alloys have been deposited on steel from sulfate bath, by electrodeposition method. The effect of Zn content on deposits properties was studied by cyclic voltammetry (CV), chronoaperometry (CA), linear stripping voltammetry (ALSV) and diffraction (XRD) and scanning electronic microscopy (SEM). The corrosion behavior in 3.5 wt. NaCl solution was examined using anodic polarization test and electrochemical impedance spectroscopy. X-ray diffraction of show that Zn-Ni alloys structure is composed of δ phase and γ phase, which increase with the decrease of Zn content in deposits. Results show that deposits obtained from bath less Zn2+ concentration exhibited better corrosion resistance.


2021 ◽  
Vol 166 (4) ◽  
pp. 995-1006
Author(s):  
Atefeh Afchangi ◽  
Tayebeh Latifi ◽  
Somayeh Jalilvand ◽  
Sayed Mahdi Marashi ◽  
Zabihollah Shoja

2016 ◽  
Vol 17 (4) ◽  
pp. 527-533
Author(s):  
Roberta Ariboni Brandi ◽  
Adriana Moraes de Oliveira Tribucci ◽  
Júlio César de Carvalho Balieiro ◽  
Ricardo Luiz Moro de Souza ◽  
Alfredo Manuel Franco Pereira ◽  
...  

Abstract This study aimed to evaluate the effect of diets containing increasing levels of citrus pulp on the physicochemical and microbiological characteristics of horses feces. Five mares, at an average age of 3.5 years old and body weight of 492 ± 44.5 kg were arranged in a 5 x 5 Latin Square. The experimental diet consisted of 60% coast-cross hay and 40 % of concentrate with increasing levels of citrus pulp (0, 7, 14, 21, and 28 %). To determine the fecal pH, samples were collected directly from the floor, immediately after defecation, in the first feces of the day at 07:00 a.m., and color and fecal consistency were evaluated. For microbiological analysis, an aliquot was reserved in plastic bags, frozen, and sent to the microbiological laboratory for further analysis. Lactic acid bacteria were counted for Lactobacillus spp. and Streptococcus spp. from fecal samples under anaerobic conditions. The diet produced differences (P<0.05) in feces consistency: 98% of the animals had normal and firm stools, while 2% were loose ruminant-type feces. We observed no difference (P<0.05) for color, verifying 100% of the animals of greenish feces, normal for equines. There was no effect (P>0.05) on pH and on the number of Lactobacillus spp. and Streptococcus spp. The inclusion of up to 28% citrus pulp concentrates for horses did not promote change in the physicochemical characteristics and on the population of lactic acid-producing bacteria in feces.


2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Mehdi Jalali ◽  
Zeinab Deris Falahieh ◽  
Mohammad Alimoradi ◽  
Jalal Albadi ◽  
Ali Niazi

The electrochemical behavior of Bi+3 ions on the surface of a glassy carbon electrode, in acidic media and in the presence of tamoxifen, was investigated. Cyclic voltammetry, chronoamperometry, differential pulse voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used to find the probable mechanism contributing to the reduction of the peak height of bismuth oxidation with an increase in the concentration of tamoxifen. The obtained results show a slight interaction between the bismuth species and tamoxifen which co-deposit on the surface of glassy carbon electrode. Therefore, the reduction in the peak height of bismuth oxidation as a function of tamoxifen concentration was used to develop a new differential pulse anodic striping voltammetry method for determination of trace amount of tamoxifen. The effects of experimental parameters on the in situ DPASV of Bi+3 ions in the presence of tamoxifen shown the optimal conditions as: 2 mol L-1 H2SO4 (1% v v-1 MeOH), a deposition potential of -0.5 V, a deposition time of 60 s, and a glassy carbon electrode rotation rate of 300 rpm. The calibration curve was plotted in the range of 0.5 to 6 µg mL-1 and the limits of detection and quantitation were calculated to be 3.1 × 10-5 µg mL-1 and 1.0 × 10-4 µg mL-1, respectively. The mean, RSD, and relative bias for 0.5 µg mL-1 (n=5) were found to be 0.49 µg mL-1, 0.3%, and 2%, respectively. Finally, the proposed method was successfully used for the determination of tamoxifen in serum and pharmaceutical samples.


2021 ◽  
Author(s):  
Sunil Kumar ◽  
Abhay Nanda Srivastva

Carbon nanomaterials (CNMs), especially carbon nanotubes and graphene, have been attracting tremendous attention in environmental analysis for rapid and cost effective detection of various analytes by electrochemical sensing. CNMs can increase the electrode effective area, enhance the electron transfer rate between the electrode and analytes, and/or act as catalysts to increase the efficiency of electrochemical reaction, detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots exhibited high adsorption and detection capacity. Carbon and its derivatives possess excellent electro catalytic properties for the modified sensors, electrochemical methods usually based on anodic stripping voltammetry at some modified carbon electrodes. Metal electrode detection sensitivity is enhanced through surface modification of working electrode (GCE). Heavy metals have the defined redox potential. A remarkable deal of efficiency with the electrochemical sensors can be succeeded by layering the surface of the working electrode with film of active electro-catalytic species. Usually, electro catalysts used for fabrication of sensors are surfactants, nano-materials, polymers, carbon-based materials, organic ligands and biomaterials.


Sign in / Sign up

Export Citation Format

Share Document