scholarly journals An MPTCP-Based Transmission Scheme for Improving the Control Stability of Unmanned Aerial Vehicles

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2791
Author(s):  
Woonghee Lee ◽  
Joon Yeop Lee ◽  
Hyeontae Joo ◽  
Hwangnam Kim

Recently, unmanned aerial vehicles (UAVs) have been applied to various applications. In order to perform repetitive and accurate tasks with a UAV, it is more efficient for the operator to perform the tasks through an integrated management program rather than controlling the UAVs one by one through a controller. In this environment, control packets must be reliably delivered to the UAV to perform missions stably. However, wireless communication is at risk of packet loss or packet delay. Typical network communications can respond to situations in which packets are lost by retransmitting lost packets. However, in the case of UAV control, delay due to retransmission is fatal, so control packet loss and delay should not occur. As UAVs move quickly, there is a high risk of accidents if control packets are lost or delayed. In order to stably control a UAV by transmitting control messages, we propose a control packet transmission scheme, ConClone. ConClone replicates control packets and then transmits them over multiple network connections to increase the probability of successful control packet transmission. We implemented ConClone using real equipment, and we verified its performance through experiments and theoretical analysis.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3295
Author(s):  
Woonghee Lee

In the last ten years, supported by the advances in technologies for unmanned aerial vehicles (UAVs), UAVs have developed rapidly and are utilized for a wide range of applications. To operate UAVs safely, by exchanging control packets continuously, operators should be able to monitor UAVs in real-time and deal with any problems immediately. However, due to any networking problems or unstable wireless communications, control packets can be lost or transmissions can be delayed, which causes the unstable drone control. To overcome this limitation, in this paper, we propose MuTran for enabling reliable UAV control. MuTran considers the packet type and duplicates only control packets, not data packets. After that, MuTran transmits the original and duplicate packets through multiple protocols and paths to improve the reliability of control packet transmissions. We designed MuTran and conducted a lot of theoretical analyses to demonstrate the validity of MuTran and analyze it from various aspects. We implemented MuTran on real devices and evaluated MuTran using the devices. We conducted experiments to verify the limitations of the existing systems and demonstrate that control packets can be transmitted more stably by using MuTran. Through the analysis and experimental results, we confirmed that MuTran reduces the control packet transfer delay, which improves the reliability and stability of controlling UAVs.


Author(s):  
Liang Sun ◽  
Bin Hu

This paper addresses a three-dimensional (3D) leader-follower formation control problem where an event-triggered transmission scheme is developed to schedule the information exchange between the leader and follower unmanned aerial vehicles (UAVs). A novel 3D model based on a local level spherical frame is developed to characterize the relative dynamics of the leader and follower UAVs. Based on this 3D model, a novel non-linear tracking control law is developed to achieve an exponential tracking performance of the system. An event-triggered communication scheduling scheme is adopted under the proposed 3D leader-follower framework in order to achieve an efficient use of communication bandwidth by adapting the transmission time for the changes on UAV states. The stability of the formation control law and the efficiency of the event-triggered method are verified and demonstrated in simulation.


Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


2020 ◽  
Vol 79 (11) ◽  
pp. 985-995
Author(s):  
Valerii V. Semenets ◽  
V. M. Kartashov ◽  
V. I. Leonidov

2019 ◽  
Vol 78 (9) ◽  
pp. 771-781 ◽  
Author(s):  
V. M. Kartashov ◽  
V. N. Oleynikov ◽  
S. A. Sheyko ◽  
S. I. Babkin ◽  
I. V. Korytsev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document