scholarly journals Robot-Assisted Autism Therapy (RAAT). Criteria and Types of Experiments Using Anthropomorphic and Zoomorphic Robots. Review of the Research

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3720
Author(s):  
Barbara Szymona ◽  
Marcin Maciejewski ◽  
Robert Karpiński ◽  
Kamil Jonak ◽  
Elżbieta Radzikowska-Büchner ◽  
...  

Supporting the development of a child with autism is a multi-profile therapeutic work on disturbed areas, especially understanding and linguistic expression used in social communication and development of social contacts. Previous studies show that it is possible to perform some therapy using a robot. This article is a synthesis review of the literature on research with the use of robots in the therapy of children with the diagnosis of early childhood autism. The review includes scientific journals from 2005–2021. Using descriptors: ASD (Autism Spectrum Disorders), Social robots, and Robot-based interventions, an analysis of available research in PubMed, Scopus and Web of Science was done. The results showed that a robot seems to be a great tool that encourages contact and involvement in joint activities. The review of the literature indicates the potential value of the use of robots in the therapy of people with autism as a facilitator in social contacts. Robot-Assisted Autism Therapy (RAAT) can encourage child to talk or do exercises. In the second aspect (prompting during a conversation), a robot encourages eye contact and suggests possible answers, e.g., during free conversation with a peer. In the third aspect (teaching, entertainment), the robot could play with autistic children in games supporting the development of joint attention. These types of games stimulate the development of motor skills and orientation in the body schema. In future work, a validation test would be desirable to check whether children with ASD are able to do the same with a real person by learning distrust and cheating the robot.

2018 ◽  
Author(s):  
Matthew J. Bolton ◽  
William G. Blumberg ◽  
Lara K. Ault ◽  
H. Michael Mogil ◽  
Stacie H. Hanes

Weather is important to all people, including vulnerable populations (those whose circumstances include cognitive processing, hearing, or vision differences, physical disability, homelessness, and other scenarios and factors). Autism spectrum conditions (ASC) affect information-processing and areas of neurological functioning that potentially inhibit the reception of hazardous weather information, and is of particular concern for weather messengers. People on the autism spectrum tend to score highly in tests of systemizing, a psychological process that heavily entails attention to detail and revolves around the creation of logical rules to explain things that occur in the world. This article reports the results of three preliminary studies examining weather salience–psychological attention to weather–and its potential relationships with systemizing in autistic people. Initial findings suggest that enhanced weather salience exists among autistic individuals compared to those without the condition, and that this may be related to systemizing. These findings reveal some possible strategies for communicating weather to autistic populations and motivate future work on a conceptual model that blends systemizing and chaos theory to better understand weather salience.


2019 ◽  
pp. 211-215
Author(s):  
Peter Beale ◽  
Levi Kitchen ◽  
W.R. Graf ◽  
M.E. Fenton ◽  

The complete pathophysiology of decompression illness is not yet fully understood. What is known is that the longer a diver breathes pressurized air at depth, the more likely nitrogen bubbles are to form once the diver returns to surface [1]. These bubbles have varying mechanical, embolic and biochemical effects on the body. The symptoms produced can be as mild as joint pain or as significant as severe neurologic dysfunction, cardiopulmonary collapse or death. Once clinically diagnosed, decompression illness must be treated rapidly with recompression therapy in a hyperbaric chamber. This case report involves a middle-aged male foreign national who completed three dives, all of which incurred significant bottom time (defined as: “the total elapsed time from the time the diver leaves the surface to the time he/she leaves the bottom)” [2]. The patient began to develop severe abdominal and back pain within 15 minutes of surfacing from his final dive. This case is unique, as his presentation was very concerning for other medical catastrophes that had to be quickly ruled out, prior to establishing the diagnosis of severe decompression illness. After emergency department resuscitation, labs and imaging were obtained; abdominal decompression illness was confirmed by CT, revealing a significant abdominal venous gas burden.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry M. Davydov ◽  
Andrey Boev ◽  
Stas Gorbunov

AbstractSituational or persistent body fluid deficit (i.e., de- or hypo-hydration) is considered a significant health risk factor. Bioimpedance analysis (BIA) has been suggested as an alternative to less reliable subjective and biochemical indicators of hydration status. The present study aimed to compare various BIA models in the prediction of direct measures of body compartments associated with hydration/osmolality. Fish (n = 20) was selected as a biological model for physicochemically measuring proximate body compartments associated with hydration such as water, dissolved proteins, and non-osseous minerals as the references or criterion points. Whole-body and segmental/local impedance measures were used to investigate a pool of BIA models, which were compared by Akaike Information Criterion in their ability to accurately predict the body components. Statistical models showed that ‘volumetric-based’ BIA measures obtained in parallel, such as distance2/Rp, could be the best approach in predicting percent of body moisture, proteins, and minerals in the whole-body schema. However, serially-obtained BIA measures, such as the ratio of the reactance to resistance and the resistance adjusted for distance between electrodes, were the best fitting in predicting the compartments in the segmental schema. Validity of these results should be confirmed on humans before implementation in practice.


Author(s):  
Shu Lih Oh ◽  
V. Jahmunah ◽  
N. Arunkumar ◽  
Enas W. Abdulhay ◽  
Raj Gururajan ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a person’s life. Autism is influenced by both genetic and environmental factors. Lack of social interaction, communication problems, and a limited range of behaviors and interests are possible characteristics of autism in children, alongside other symptoms. Electroencephalograms provide useful information about changes in brain activity and hence are efficaciously used for diagnosis of neurological disease. Eighteen nonlinear features were extracted from EEG signals of 40 children with a diagnosis of autism spectrum disorder and 37 children with no diagnosis of neuro developmental disorder children. Feature selection was performed using Student’s t test, and Marginal Fisher Analysis was employed for data reduction. The features were ranked according to Student’s t test. The three most significant features were used to develop the autism index, while the ranked feature set was input to SVM polynomials 1, 2, and 3 for classification. The SVM polynomial 2 yielded the highest classification accuracy of 98.70% with 20 features. The developed classification system is likely to aid healthcare professionals as a diagnostic tool to detect autism. With more data, in our future work, we intend to employ deep learning models and to explore a cloud-based detection system for the detection of autism. Our study is novel, as we have analyzed all nonlinear features, and we are one of the first groups to have uniquely developed an autism (ASD) index using the extracted features.


Author(s):  
Iris van den Berk-Smeekens ◽  
Manon W. P. de Korte ◽  
Martine van Dongen-Boomsma ◽  
Iris J. Oosterling ◽  
Jenny C. den Boer ◽  
...  

AbstractPivotal response treatment (PRT) is a promising intervention focused on improving social communication skills in children with autism spectrum disorder (ASD). Since robots potentially appeal to children with ASD and may contribute to their motivation for social interaction, this exploratory randomized controlled trial (RCT) was conducted comparing PRT (PRT and robot-assisted PRT) with treatment-as-usual (TAU). Seventy-three children (PRT: n = 25; PRT + robot: n = 25; TAU: n = 23) with ASD, aged 3–8 years were assessed at baseline, after 10 and 20 weeks of intervention, and at 3-month follow-up. There were no significant group differences on parent- and teacher-rated general social-communicative skills and blindly rated global functioning directly after treatment. However, at follow-up largest gains were observed in robot-assisted PRT compared to other groups. These results suggest that robot-assistance may contribute to intervention efficacy for children with ASD when using game scenarios for robot-child interaction during multiple sessions combined with motivational components of PRT. This trial is registered at https://www.trialregister.nl/trial/4487; NL4487/NTR4712 (2014-08-01).


Author(s):  
Emma K. Austin ◽  
Carole James ◽  
John Tessier

Pneumoconiosis, or occupational lung disease, is one of the world’s most prevalent work-related diseases. Silicosis, a type of pneumoconiosis, is caused by inhaling respirable crystalline silica (RCS) dust. Although silicosis can be fatal, it is completely preventable. Hundreds of thousands of workers globally are at risk of being exposed to RCS at the workplace from various activities in many industries. Currently, in Australia and internationally, there are a range of methods used for the respiratory surveillance of workers exposed to RCS. These methods include health and exposure questionnaires, spirometry, chest X-rays, and HRCT. However, these methods predominantly do not detect the disease until it has significantly progressed. For this reason, there is a growing body of research investigating early detection methods for silicosis, particularly biomarkers. This literature review summarises the research to date on early detection methods for silicosis and makes recommendations for future work in this area. Findings from this review conclude that there is a critical need for an early detection method for silicosis, however, further laboratory- and field-based research is required.


Sign in / Sign up

Export Citation Format

Share Document