scholarly journals GoRG: Towards a GPU-Accelerated Multiview Hyperspectral Depth Estimation Tool for Medical Applications

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4091
Author(s):  
Jaime Sancho ◽  
Pallab Sutradhar ◽  
Gonzalo Rosa ◽  
Miguel Chavarrías ◽  
Angel Perez-Nuñez ◽  
...  

HyperSpectral (HS) images have been successfully used for brain tumor boundary detection during resection operations. Nowadays, these classification maps coexist with other technologies such as MRI or IOUS that improve a neurosurgeon’s action, with their incorporation being a neurosurgeon’s task. The project in which this work is framed generates an unified and more accurate 3D immersive model using HS, MRI, and IOUS information. To do so, the HS images need to include 3D information and it needs to be generated in real-time operating room conditions, around a few seconds. This work presents Graph cuts Reference depth estimation in GPU (GoRG), a GPU-accelerated multiview depth estimation tool for HS images also able to process YUV images in less than 5.5 s on average. Compared to a high-quality SoA algorithm, MPEG DERS, GoRG YUV obtain quality losses of −0.93 dB, −0.6 dB, and −1.96% for WS-PSNR, IV-PSNR, and VMAF, respectively, using a video synthesis processing chain. For HS test images, GoRG obtains an average RMSE of 7.5 cm, with most of its errors in the background, needing around 850 ms to process one frame and view. These results demonstrate the feasibility of using GoRG during a tumor resection operation.

2021 ◽  
Author(s):  
Xiu-Heng Zhang ◽  
Heng Zhang ◽  
Zhen Li ◽  
Gui-Bin Bian

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips is not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three Fiber Bragg Grating Sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in-vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0-4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.


2014 ◽  
Vol 2014 (0) ◽  
pp. _3A1-B04_1-_3A1-B04_4
Author(s):  
Kazuya SASE ◽  
Atsushi KONNO ◽  
Teppei TSUJITA ◽  
Akira FUKUHARA ◽  
XiaoShuai CHEN ◽  
...  

2020 ◽  
Vol 50 (2) ◽  
Author(s):  
Jae-Ho Han ◽  
Jaepyeong Cha

Minimally invasive intraoperative imaging plays a crucial role in delicate microsurgeries for precise operation monitoring in which fiber optic imaging can be considered as an endoscopy and surgical proximity guidance tool due to its compactness. This paper presents a near-infrared time-domain reflectometric common-path optical coherence tomography imaging technique using a bare-fiber probe mounted directly on a scanning galvanometer. The common-path setup allows the use of a freely adjustable optical path length and a disposable fiber probe, as well as eliminating the need for an additional dedicated reference optical path. Experimental results demonstrate clear discrimination between the brain tumor tissue and the normal tissue for mouse brains with the images acquired in real-time over a wide area. The proposed method enables real-time and in situ visualization of tumor resection for intraoperative imaging, and this study demonstrates the feasibility of its application to microsurgical interventions.


2017 ◽  
Vol 8 (8) ◽  
pp. 3656 ◽  
Author(s):  
Dennis Wirth ◽  
Kolbein Kolste ◽  
Stephen Kanick ◽  
David W. Roberts ◽  
Frédéric Leblond ◽  
...  

2021 ◽  
Author(s):  
G. Krishna Kumar ◽  
Anandh Balasubramaniam ◽  
K. Pradeep ◽  
Nitin Manohar

Intraoperative MRI (ioMRI) has evolved since it used in 1991. ioMRI has been effective tool not only in glioma surgeries but also in other neurosurgical procedures. It provides real time information with high quality resolution and it is not affected by brain shift. ioMRI images can be uploaded in the navigation which helps in further resection of residual tumors. ioMRI can be used for confirmation of complete excision of tumor or location of microelectrode catheter tip DBS/sterotatic biopsy. It provides valuable information like location and amount of residue which guides surgeon for further resection safely as possible. ioMRI requires specialized operation theater with MRI compatible instruments which makes this setup expensive and it is available in only few centers across the globe.


Author(s):  
Nicolas Neidert ◽  
Jakob Straehle ◽  
Daniel Erny ◽  
Vlad Sacalean ◽  
Amir El Rahal ◽  
...  

AbstractHistopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a “plug-and-play” manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.


2017 ◽  
Author(s):  
Danying Hu ◽  
Yang Jiang ◽  
Evgenii Belykh ◽  
Yuanzheng Gong ◽  
Mark C. Preul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document