scholarly journals Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4349
Author(s):  
Shu-Zhi Liu ◽  
Rashmi Sharan Sinha ◽  
Seung-Hoon Hwang

Wi-Fi-based indoor positioning systems have a simple layout and a low cost, and they have gradually become popular in both academia and industry. However, due to the poor stability of Wi-Fi signals, it is difficult to accurately decide the position based on a received signal strength indicator (RSSI) by using a traditional dataset and a deep learning classifier. To overcome this difficulty, we present a clustering-based noise elimination scheme (CNES) for RSSI-based datasets. The scheme facilitates the region-based clustering of RSSIs through density-based spatial clustering of applications with noise. In this scheme, the RSSI-based dataset is preprocessed and noise samples are removed by CNES. This experiment was carried out in a dynamic environment, and we evaluated the lab simulation results of CNES using deep learning classifiers. The results showed that applying CNES to the test database to eliminate noise will increase the success probability of fingerprint location. The lab simulation results show that after using CNES, the average positioning accuracy of margin-zero (zero-meter error), margin-one (two-meter error), and margin-two (four-meter error) in the database increased by 17.78%, 7.24%, and 4.75%, respectively. We evaluated the simulation results with a real time testing experiment, where the result showed that CNES improved the average positioning accuracy to 22.43%, 9.15%, and 5.21% for margin-zero, margin-one, and margin-two error, respectively.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 982 ◽  
Author(s):  
Yue Liu ◽  
Rashmi Sharan Sinha ◽  
Shu-Zhi Liu ◽  
Seung-Hoon Hwang

Deep-learning classifiers can effectively improve the accuracy of fingerprint-based indoor positioning. During fingerprint database construction, all received signal strength indicators from each access point are combined without any distinction. Therefore, the database is created and utilised for deep-learning models. Meanwhile, side information regarding specific conditions may help characterise the data features for the deep-learning classifier and improve the accuracy of indoor positioning. Herein, a side-information-aided preprocessing scheme for deep-learning classifiers is proposed in a dynamic environment, where several groups of different databases are constructed for training multiple classifiers. Therefore, appropriate databases can be employed to effectively improve positioning accuracies. Specifically, two kinds of side information, namely time (morning/afternoon) and direction (forward/backward), are considered when collecting the received signal strength indicator. Simulations and experiments are performed with the deep-learning classifier trained on four different databases. Moreover, these are compared with conventional results from the combined database. The results show that the side-information-aided preprocessing scheme allows better success probability than the conventional method. With two margins, the proposed scheme has 6.55% and 5.8% improved performances for simulations and experiments compared to the conventional scheme. Additionally, the proposed scheme, with time as the side information, obtains a higher success probability when the positioning accuracy requirement is loose with larger margin. With direction as the side information, the proposed scheme shows better performance for high positioning precision requirements. Thus, side information such as time or direction is advantageous for preprocessing data in deep-learning classifiers for fingerprint-based indoor positioning.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Alwin Poulose ◽  
Dong Seog Han

Positioning using Wi-Fi received signal strength indication (RSSI) signals is an effective method for identifying the user positions in an indoor scenario. Wi-Fi RSSI signals in an autonomous system can be easily used for vehicle tracking in underground parking. In Wi-Fi RSSI signal based positioning, the positioning system estimates the signal strength of the access points (APs) to the receiver and identifies the user’s indoor positions. The existing Wi-Fi RSSI based positioning systems use raw RSSI signals obtained from APs and estimate the user positions. These raw RSSI signals can easily fluctuate and be interfered with by the indoor channel conditions. This signal interference in the indoor channel condition reduces localization performance of these existing Wi-Fi RSSI signal based positioning systems. To enhance their performance and reduce the positioning error, we propose a hybrid deep learning model (HDLM) based indoor positioning system. The proposed HDLM based positioning system uses RSSI heat maps instead of raw RSSI signals from APs. This results in better localization performance for Wi-Fi RSSI signal based positioning systems. When compared to the existing Wi-Fi RSSI based positioning technologies such as fingerprint, trilateration, and Wi-Fi fusion approaches, the proposed approach achieves reasonably better positioning results for indoor localization. The experiment results show that a combination of convolutional neural network and long short-term memory network (CNN-LSTM) used in the proposed HDLM outperforms other deep learning models and gives a smaller localization error than conventional Wi-Fi RSSI signal based localization approaches. From the experiment result analysis, the proposed system can be easily implemented for autonomous applications.


2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4351 ◽  
Author(s):  
Ashraf ◽  
Hur ◽  
Park

The applications of location-based services require precise location information of a user both indoors and outdoors. Global positioning system’s reduced accuracy for indoor environments necessitated the initiation of Indoor Positioning Systems (IPSs). However, the development of an IPS which can determine the user’s position with heterogeneous smartphones in the same fashion is a challenging problem. The performance of Wi-Fi fingerprinting-based IPSs is degraded by many factors including shadowing, absorption, and interference caused by obstacles, human mobility, and body loss. Moreover, the use of various smartphones and different orientations of the very same smartphone can limit its positioning accuracy as well. As Wi-Fi fingerprinting is based on Received Signal Strength (RSS) vector, it is prone to dynamic intrinsic limitations of radio propagation, including changes over time, and far away locations having similar RSS vector. This article presents a Wi-Fi fingerprinting approach that exploits Wi-Fi Access Points (APs) coverage area and does not utilize the RSS vector. Using the concepts of APs coverage area uniqueness and coverage area overlap, the proposed approach calculates the user’s current position with the help of APs’ intersection area. The experimental results demonstrate that the device dependency can be mitigated by making the fingerprinting database with the proposed approach. The experiments performed at a public place proves that positioning accuracy can also be increased because the proposed approach performs well in dynamic environments with human mobility. The impact of human body loss is studied as well.


Computation ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Olaoluwa Popoola ◽  
Sinan Sinanović ◽  
Wasiu Popoola ◽  
Roberto Ramirez-Iniguez

Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 195 ◽  
Author(s):  
Amir Haider ◽  
Yiqiao Wei ◽  
Shuzhi Liu ◽  
Seung-Hoon Hwang

To accommodate the rapidly increasing demand for connected infrastructure, automation for industrial sites and building smart cities, the development of Internet of Things (IoT)-based solutions is considered one of the major trends in modern day industrial revolution. In particular, providing high precision indoor positioning services for such applications is a key challenge. Wi-Fi fingerprint-based indoor positioning systems have been adapted as promising candidates for such applications. The performance of such indoor positioning systems degrade drastically due to several impairments like noisy datasets, high variation in Wi-Fi signals over time, fading of Wi-Fi signals due to multipath propagation caused by hurdles, people walking in the area under consideration and the addition/removal of Wi-Fi access points (APs). In this paper, we propose data pre- and post-processing algorithms with deep learning classifiers for Wi-Fi fingerprint-based indoor positioning, in order to provide immunity against limitations in the database and the indoor environment. In addition, we investigate the performance of the proposed system through simulation as well as extensive experiments. The results demonstrate that the pre-processing algorithm can efficiently fill in the missing Wi-Fi received signal strength fingerprints in the database, resulting in a success rate of 88.96% in simulation and 86.61% in a real-time experiment. The post-processing algorithm can improve the results from 9.05–10.94% for the conducted experiments, providing the highest success rate of 95.94% with a precision of 4 m for Wi-Fi fingerprint-based indoor positioning.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1223 ◽  
Author(s):  
Gabriel de Blasio ◽  
Alexis Quesada-Arencibia ◽  
José Carlos Rodríguez-Rodríguez ◽  
Carmelo R. García ◽  
Roberto Moreno-Díaz Jr.

Blue Low Energy technology is playing an important role nowadays in ubiquitous systems, being the beacons a key element. The configuration of parameters related to the beacons, such as their transmission power or their advertising interval should be studied in order to build fingerprinting indoor positioning systems based on this technology as accurate as possible. In this work, we study the impact and the interplay of those parameters in static indoor positioning as well as the orientation effect in the calibration phase. To reduce the time of data collection, a semi-automatic system is introduced.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3087 ◽  
Author(s):  
de Blasio ◽  
Rodríguez-Rodríguez ◽  
García ◽  
Quesada-Arencibia

Indoor positioning systems (IPS) are used to locate people or objects in environments where the global positioning system (GPS) fails. The commitment to make bluetooth low energy (BLE) technology the leader in IPS and their applications is clear: Since 2009, the Bluetooth Special Interest Group (SIG) has released several improved versions. BLE offers many advantages for IPS, e.g., their emitters or beacons are easily deployable, have low power consumption, give a high positioning accuracy and can provide advanced services to users. Fingerprinting is a popular indoor positioning algorithm that is based on the received signal strength (RSS); however, its main drawbacks are that data collection is a time-consuming and labor-intensive process and its main challenge is that positioning accuracy is affected by various factors. The purpose of this work was to develop a semi-automatic data collection support system in a BLE fingerprinting-based IPS to: (1) Streamline and shorten the data collection process, (2) carry out impact studies by protocol and channel on the static positioning accuracy related to configuration param of the beacons, such as transmission power (Tx) and the advertising interval (A), and their number and geometric distribution. With two types of systems-on-chip (SoCs) integrated in Bluetooth 5 beacons and in two different environments, our results showed that on average in the three BLE advertising channels, the configuration of the highest Tx (+4 dBm) in the beacons produced the best accuracy results. However, the lowest Tx (−20 dBm) did not worsen them excessively (only 11.8%). In addition, in both scenarios, when lowering the density of beacons by around 42.7%–50%, the error increase was only around 8%–9.2%.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Aichuan Li ◽  
Shujuan Yi

To solve the problem of low positioning accuracy and ease environmental impact of wearable devices in the Internet of things, a wearable device indoor positioning algorithm based on deep learning was proposed. Firstly, a basic model of deep learning composed of an input layer, hidden layer, and output layer is proposed to realize the continuous prediction and positioning with higher accuracy. Secondly, the automatic stacking encoder is trained with signal strength data, and features are extracted from a large number of signal strength samples with noise to build the location fingerprint database. Finally, the stacking automatic coding machine is used to obtain the signal strength characteristics of the points to be measured, which are matched with the signal strength characteristics in the fingerprint database, and the location of the points to be measured is estimated by the nearest neighbor algorithm. The experimental results show that the indoor positioning algorithm based on the stacking automatic coding machine has higher positioning accuracy, and the average error of points on the complete path can reach within 3 m in 93% cases.


2020 ◽  
Vol 10 (6) ◽  
pp. 2003 ◽  
Author(s):  
Liu Liu ◽  
Bofeng Li ◽  
Ling Yang ◽  
Tianxia Liu

For localization in daily life, low-cost indoor positioning systems should provide real-time locations with a reasonable accuracy. Considering the flexibility of deployment and low price of iBeacon technique, we develop a real-time fusion workflow to improve localization accuracy of smartphone. First, we propose an iBeacon-based method by integrating a trilateration algorithm with a specific fingerprinting method to resist RSS fluctuations, and obtain accurate locations as the baseline result. Second, as turns are pivotal for positioning, we segment pedestrian trajectories according to turns. Then, we apply a Kalman filter (KF) to heading measurements in each segment, which improves the locations derived by pedestrian dead reckoning (PDR). Finally, we devise another KF to fuse the iBeacon-based approach with the PDR to overcome orientation noises. We implemented this fusion workflow in an Android smartphone and conducted real-time experiments in a building floor. Two different routes with sharp turns were selected. The positioning accuracy of the iBeacon-based method is RMSE 2.75 m. When the smartphone is held steadily, the fusion positioning tests result in RMSE of 2.39 and 2.22 m for the two routes. In addition, the other tests with orientation noises can still result in RMSE of 3.48 and 3.66 m. These results demonstrate our fusion workflow can improve the accuracy of iBeacon positioning and alleviate the influence of PDR drifting.


Sign in / Sign up

Export Citation Format

Share Document