scholarly journals A Grain-Scale Study of Mojave Mars Simulant (MMS-1)

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4730
Author(s):  
Sathwik S. Kasyap ◽  
Kostas Senetakis

Space exploration has attracted significant interest by government agencies and the scientific community in recent years in an attempt to explore possible scenarios of settling of facilities on the Moon and Mars surface. One of the important components in space exploration is related with the understanding of the geophysical and geotechnical characteristics of the surfaces of planets and their natural satellites and because of the limitation of available extra-terrestrial samples, many times researchers develop simulants, which mimic the properties and characteristics of the original materials. In the present study, characterization at the grain-scale was performed on the Mojave Mars Simulant (MMS-1) with emphasis on the frictional behavior of small size samples which follow the particle-to-particle configuration. Additional characterization was performed by means of surface composition and morphology analysis and the crushing behavior of individual grains. The results from the study present for the first time the micromechanical tribological response of Mars simulant, and attempts were also made to compare the behavior of this simulant with previously published results on other types of Earth and extra-terrestrial materials. Despite some similarities between Mars and Moon simulants, the unique characteristics of the MMS-1 samples resulted in significant differences and particularly in severe damage of the grain surfaces, which was also linked to the dilation behavior at the grain-scale.

1983 ◽  
Vol 73 (6A) ◽  
pp. 1895-1902
Author(s):  
Gerard C. Pardoen

Abstract The ambient vibration test results conducted on the Imperial County Services Building prior to the 15 October 1979 Imperial Valley earthquake are summarized. These results are of significant interest because the Imperial County Services Building has been the source of many postearthquake investigations due to the fact that the 1979 earthquake represented the first time a building instrumented with strong motion recorders suffered and recorded the major structural failure.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 411
Author(s):  
Vasily N. Lednev ◽  
Alexey F. Bunkin ◽  
Sergey M. Pershin ◽  
Mikhail Ya. Grishin ◽  
Diana G. Artemova ◽  
...  

The laser induced fluorescence spectroscopy was systematically utilized for remote sensing of different soils and rocks for the first time, to the best of our knowledge. Laser induced fluorescence spectroscopy measurements were carried out by the developed nanosecond LIDAR instrument with variable excitation wavelength (355, 532 and 1064 nm). LIDAR sensing of different Brazil soil samples have been carried out in order to construct a spectral database. The laser induced fluorescence spectra interpretation for different samples has been discussed in detail. The perspectives of LIDAR sensing of organic samples deposited at soils and rock have been discussed including future space exploration missions in the search for extraterrestrial life.


Satellites ◽  
1986 ◽  
pp. 437-491
Author(s):  
ROGER N. CLARK ◽  
FRASER P. FANALE ◽  
MICHAEL J. GAFFEY

2019 ◽  
Vol 20 (2) ◽  
pp. 352 ◽  
Author(s):  
Walter Tinganelli ◽  
Timna Hitrec ◽  
Fabrizio Romani ◽  
Palma Simoniello ◽  
Fabio Squarcio ◽  
...  

Hibernation has been proposed as a tool for human space travel. In recent years, a procedure to induce a metabolic state known as “synthetic torpor” in non-hibernating mammals was successfully developed. Synthetic torpor may not only be an efficient method to spare resources and reduce psychological problems in long-term exploratory-class missions, but may also represent a countermeasure against cosmic rays. Here we show the preliminary results from an experiment in rats exposed to ionizing radiation in normothermic conditions or synthetic torpor. Animals were irradiated with 3 Gy X-rays and organs were collected 4 h after exposure. Histological analysis of liver and testicle showed a reduced toxicity in animals irradiated in torpor compared to controls irradiated at normal temperature and metabolic activity. The expression of ataxia telangiectasia mutated (ATM) in the liver was significantly downregulated in the group of animal in synthetic torpor. In the testicle, more genes involved in the DNA damage signaling were downregulated during synthetic torpor. These data show for the first time that synthetic torpor is a radioprotector in non-hibernators, similarly to natural torpor in hibernating animals. Synthetic torpor can be an effective strategy to protect humans during long term space exploration of the solar system.


2010 ◽  
Vol 47 (1) ◽  
pp. 116-132 ◽  
Author(s):  
James Glastonbury ◽  
Robin Fell

Based on the analysis of 51 case studies of large rapid rock slides, for a landslide to travel rapidly after failure there has to be a significant loss of strength on the basal surface of rupture, lateral margins, and (or) internally within the slide mass, or the factor of safety has to be maintained below 1.0 after failure by high groundwater pressures. Internally sheared compound slides and translational slides may all travel rapidly depending on their detailed geotechnical and geometric characteristics. The characteristics of these landslides that suggest an increased likelihood of rapid failure have been identified. All the rapid rock slides examined in this study involved relatively high-strength rock masses. Most cases were considered to be first-time landslides, largely involving brittleness on the basal rupture surface. However, there were some cases considered to be reactivated or active landslides on pre-sheared rupture surfaces. For this latter group, the loss of strength leading to rapid landsliding was associated with brittle internal deformation or lateral margins.


1992 ◽  
Vol 06 (05n06) ◽  
pp. 547-560 ◽  
Author(s):  
LIANG CHEN ◽  
A.-M.S. TREMBLAY

Monte Carlo methods for the Hubbard model rely on a Hubbard-Stratonovich (HS) decomposition (auxiliary field method) to perform importance sampling on classical variables. Freedom in the choice of the local HS fields can be formally seen as a gauge choice. While the choice of gauge does not influence observable quantities, it may influence intermediate quantities in the calculation, such as the famous “fermion sign”, and it may also influence the efficiency with which the algorithm explores phase space. The effect of arbitrary gauge choices on both aspects of the algorithm are investigated. It is found that in the single spin-flip determinantal approach, certain gauges lead to a better exploration of phase space. This improvement is demonstrated, in the intermediate coupling regime, by histograms which for the first time show the behavior expected from grand canonical simulations. It is also found that the improved phase space exploration can in practice offset the apparent disadvantage of a smaller fermion sign.


2020 ◽  
Vol 3 (1) ◽  
pp. 345-359
Author(s):  
Sudhan Bhusal ◽  
Enjila Chapagain

Fall Armyworm (Spodoptera frugiperda) is in the state of major threat for Nepal especially in maize although it has more than 80 host to continue its life cycle. After its first incidence in Africa in 2016, it has already spread in more than 100 countries within a short period of time. It was seen in India for the first time in 2018. Due to the open border between Nepal and India, there is high probability of incidence of pest in Nepal. The temperature regime of Nepal is highly suitable for the pest establishment. Now is the time to think about the pest which can cause severe damage to the second most produced cereal crop of Nepal i.e. maize. Management of the pest is possible through many biological, chemical and cultural means. Planting of legumes as a trap crop and ploughing field properly before planting the field can be a best possible cultural method of managing the pest. Natural enemies like Telenomus, Trichogramma chilotraeae for controlling the eggs, Bacillus thuringiensis for larvae and Brachymeria ovata for pupa of Fall Armyworm in Maize and Vegetables. Similarly, Neem extracts are found be larvicidal and the oil extracted from the seeds of long pepper are found to be checking Spermatogenesis of the pest. Chemicals like Methomyl, Cyfluthrin, Methyl parathion are used tocontrol the pest. Use of chemicals at the initiation of the pest spread is discouraged as it can hamper the natural enemy present in the surrounding ecology. However, the use of pesticides can be done below the economic threshold level so that the pest does not develop any resistance towards the chemicals.


2005 ◽  
Vol 95 (9) ◽  
pp. 1089-1097 ◽  
Author(s):  
G. Morilla ◽  
D. Janssen ◽  
S. García-Andrés ◽  
E. Moriones ◽  
I. M. Cuadrado ◽  
...  

Tomato yellow leaf curl (TYLC) is one of the most devastating pathogens affecting tomato (Lycopersicon esculentum) worldwide. The disease is caused by a complex of begomovirus species, two of which, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), are responsible for epidemics in Southern Spain. TYLCV also has been reported to cause severe damage to common bean (Phaseolus vulgaris) crops. Pepper (Capsicum annuum) plants collected from commercial crops were found to be infected by isolates of two TYLCV strains: TYLCV-Mld[ES01/99], an isolate of the mild strain similar to other TYLCVs isolated from tomato crops in Spain, and TYLCV-[Alm], an isolate of the more virulent TYLCV type strain, not previously reported in the Iberian Peninsula. In this work, pepper, Nicotiana benthamiana, common bean, and tomato were tested for susceptibility to TYLCV-Mld[ES01/99]and TYLCV-[Alm] by Agrobacterium tumefaciens infiltration, biolistic bombardment, or Bemisia tabaci inoculation. Results indicate that both strains are able to infect plants of these species, including pepper. This is the first time that infection of pepper plants with TYLCV clones has been shown. Implications of pepper infection for the epidemiology of TYLCV are discussed.


2020 ◽  
Author(s):  
Manuel Scherf ◽  
Nikolay Erkaev ◽  
Helmut Lammer

<p>Of all the terrestrial planets in the Solar System Mercury stands out with a remarkably high core-mantle ratio, with its core occupying about 85% of the planetary radius. Several different theories tried to explain its high Fe/Si-ratio; the giant impact theory (e.g. [1]) for instance argues that one or more giant impacts stripped away most of the Hermean mantle, while the core remained and formed the smallest of the terrestrial planets. Another theory explains the high density of Mercury through a partial volatilization during the time of the solar nebula (e.g. [2]). Here, proto-Mercury is assumed to be substantially more massive than at present-day with a composition close to those of the other terrestrial planets. When the planet was surrounded by the hot solar nebula, however, most of the mantle evaporated, ending up with present-day Mercury. Other theories argue with the particular primordial conditions of its orbital location that might have favored the accretion of dense and volatile poor building-blocks such as enstatite chondrites (e.g. [3,4]). Messenger, however, revealed a surface composition that is surprisingly rich in volatile and moderately volatile elements [4]. This is hardly compatible with the giant impact and vaporization theory but supports hypothesis that connect Mercury’s high core-mantle ratio to the particular conditions of its orbital location.</p> <p>Within this talk, we will for the first time present a new model that connects these conditions with accretion and partial planetary evaporation. We will argue that Mercury (in contrast to old evaporation theories) was released out of the nebula as a small planetary embryo, comparable in size to the moon, that was covered with a global magma ocean. While the embryo proceeds to grow through frequent impactors, (moderately) volatile elements evaporate from the magma ocean and are lost into space due to the high surface temperature, the low gravity of the body and the high XUV flux from the young Sun. Here, lighter and more volatile elements are preferentially lost from the embryo, while the heavier and less volatile elements escape less efficient. Due to the continuous growth of proto-Mercury, however, the gravitational energy will start to dominate over the thermal energy of the evaporated particles, making them harder and harder to escape, which ultimately halts the loss of moderately volatile elements. Mercury subsequently finalizes its accretion with relatively volatile rich material and evolves to the body we can observe at present-day. We simulated the escape of (moderately) volatile elements with an adopted version of a 1D hydrodynamic upper atmosphere model (e.g. [5]) and will present our results here for the first time.</p> <p><strong>References:</strong> [1] Benz, W. et al., Space Sciences Series of ISSI, Volume 26, p. 7., 2008. [2] Cameron, A.G.W., Icarus, Volume 64, Issue 2, p. 285-294., 1985. [3] Charlier, B. and Namur, O., Elements, Volume 15, p. 9-14, 2019. [4] Nittler, Larry R. et al., Science, Volume 333, Issue 6051, pp. 1847, 2011. []5 Erkaev, et al., MNRAS, Volume 460, Issue 2, p.1300-1309, 2016.</p>


2019 ◽  
Vol 6 (6) ◽  
pp. 1274-1278
Author(s):  
Weijie Zhao ◽  
Chi Wang

Abstract The Chinese lunar probe Chang'e-4 (CE-4) landed in the Von Kármán crater within the South Pole–Aitken (SPA) basin on the far-side of the Moon on 3 January 2019. Following this, the moon rover Yutu-2 separated from the CE-4 lander and started its travels and exploration on the far-side of the Moon. Before this landing, humans had remotely observed the far-side of the Moon with lunar satellites. However, it was the first time that a man-made spacecraft had landed there and actually left behind wheel prints belonging to humanity. Since China's Lunar Exploration Project (CLEP), or Chang'e Project, started in 2004, China has accomplished the first two steps of its three-step plan of ‘Orbiting, Landing and Returning’. CE-3 and CE-4 landed successfully on the near-side and far-side of the Moon, respectively. In the near future, CE-5 will land again on the near-side of the Moon and take lunar rock and soil samples back to Earth, thus completing the three-step plan of CLEP. In April 2019, National Science Review (NSR) interviewed three key figures of CLEP: CLEP Chief Engineer Weiren Wu (), the first CLEP Chief Scientist and CLEP senior consultant Ziyuan Ouyang (), and CLEP third phase Vice-Chief Engineer, CE-4 Ground Research and Application System Director Chunlai Li (). They talked about the scientific expectations and future plans of China's lunar and deep space exploration.


Sign in / Sign up

Export Citation Format

Share Document