scholarly journals Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4990
Author(s):  
Jean Frederic Isingizwe Nturambirwe ◽  
Willem Jacobus Perold ◽  
Umezuruike Linus Opara

Bruise damage is a very commonly occurring defect in apple fruit which facilitates disease occurrence and spread, leads to fruit deterioration and can greatly contribute to postharvest loss. The detection of bruises at their earliest stage of development can be advantageous for screening purposes. An experiment to induce soft bruises in Golden Delicious apples was conducted by applying impact energy at different levels, which allowed to investigate the detectability of bruises at their latent stage. The existence of bruises that were rather invisible to the naked eye and to a digital camera was proven by reconstruction of hyperspectral images of bruised apples, based on effective wavelengths and data dimensionality reduced hyperspectrograms. Machine learning classifiers, namely ensemble subspace discriminant (ESD), k-nearest neighbors (KNN), support vector machine (SVM) and linear discriminant analysis (LDA) were used to build models for detecting bruises at their latent stage, to study the influence of time after bruise occurrence on detection performance and to model quantitative aspects of bruises (severity), spanning from latent to visible bruises. Over all classifiers, detection models had a higher performance than quantitative ones. Given its highest speed in prediction and high classification performance, SVM was rated most recommendable for detection tasks. However, ESD models had the highest classification accuracy in quantitative (>85%) models and were found to be relatively better suited for such a multiple category classification problem than the rest.

Author(s):  
Junjie Bai ◽  
Kan Luo ◽  
Jun Peng ◽  
Jinliang Shi ◽  
Ying Wu ◽  
...  

Music emotions recognition (MER) is a challenging field of studies addressed in multiple disciplines such as musicology, cognitive science, physiology, psychology, arts and affective computing. In this article, music emotions are classified into four types known as those of pleasing, angry, sad and relaxing. MER is formulated as a classification problem in cognitive computing where 548 dimensions of music features are extracted and modeled. A set of classifications and machine learning algorithms are explored and comparatively studied for MER, which includes Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Neuro-Fuzzy Networks Classification (NFNC), Fuzzy KNN (FKNN), Bayes classifier and Linear Discriminant Analysis (LDA). Experimental results show that the SVM, FKNN and LDA algorithms are the most effective methodologies that obtain more than 80% accuracy for MER.


Author(s):  
Mehrdad Oghazian ◽  
Farzad Saffari ◽  
Ali Khadem

Purpose: Inhibitory and excitatory neurons play an essential role in brain function, and we aim to introduce an automatic method to discriminate these two populations based on features of the shape of their spikes. Consequently, we will explain the spike extraction from raw data of a single shank electrode and determine the best features of spike waveforms for the classification of neurons. It is noteworthy that, to the best of our knowledge, classification of inhibitory and excitatory neurons using the shape features extracted from their spike waveforms has not been done before. Materials and Methods: In this paper, we use a dataset of mouse hippocampus neurons in which the neuron types (inhibitory or excitatory) have been verified optogenetically. For the classification of mouse hippocampus neurons, we extracted eight shape features of their spike waveforms in addition to their firing rates and used three types of classifiers: K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) to analyze the discriminatory power of features based on the accuracy of the classifications. Results: We showed that Spike asymmetry, Peak-to-trough ratio, Recovery slope, and Duration between peaks were four shape features of spike waveforms participated in the optimum feature subsets that resulted in maximum classification accuracy. Moreover, the SVM classifier with RBF kernel resulted in maximum accuracy of %96.91 ± %13.03 and was identified as the best classifier. Conclusion: In this study, we found that shape features of spike waveforms can accurately classify inhibitory and excitatory neurons of mouse hippocampus. Also, we found an optimum subset of shape features of spike waveforms that resulted in better classification performance than previously proposed subsets of features used for clustering of neurons. Our findings open a promising way toward a functional classification of neurons automatically.


2020 ◽  
pp. 1028-1041
Author(s):  
Junjie Bai ◽  
Kan Luo ◽  
Jun Peng ◽  
Jinliang Shi ◽  
Ying Wu ◽  
...  

Music emotions recognition (MER) is a challenging field of studies addressed in multiple disciplines such as musicology, cognitive science, physiology, psychology, arts and affective computing. In this article, music emotions are classified into four types known as those of pleasing, angry, sad and relaxing. MER is formulated as a classification problem in cognitive computing where 548 dimensions of music features are extracted and modeled. A set of classifications and machine learning algorithms are explored and comparatively studied for MER, which includes Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Neuro-Fuzzy Networks Classification (NFNC), Fuzzy KNN (FKNN), Bayes classifier and Linear Discriminant Analysis (LDA). Experimental results show that the SVM, FKNN and LDA algorithms are the most effective methodologies that obtain more than 80% accuracy for MER.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Gennaro Tartarisco ◽  
Giovanni Cicceri ◽  
Davide Di Pietro ◽  
Elisa Leonardi ◽  
Stefania Aiello ◽  
...  

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM–recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.


Author(s):  
Negin Manshouri ◽  
Mesut Melek ◽  
Temel Kayikcioglu

Despite the long and extensive history of 3D technology, it has recently attracted the attention of researchers. This technology has become the center of interest of young people because of the real feelings and sensations it creates. People see their environment as 3D because of their eye structure. In this study, it is hypothesized that people lose their perception of depth during sleepy moments and that there is a sudden transition from 3D vision to 2D vision. Regarding these transitions, the EEG signal analysis method was used for deep and comprehensive analysis of 2D and 3D brain signals. In this study, a single-stream anaglyph video of random 2D and 3D segments was prepared. After watching this single video, the obtained EEG recordings were considered for two different analyses: the part involving the critical transition (transition-state) and the state analysis of only the 2D versus 3D or 3D versus 2D parts (steady-state). The main objective of this study is to see the behavioral changes of brain signals in 2D and 3D transitions. To clarify the impacts of the human brain’s power spectral density (PSD) in 2D-to-3D (2D_3D) and 3D-to-2D (3D_2D) transitions of anaglyph video, 9 visual healthy individuals were prepared for testing in this pioneering study. Spectrogram graphs based on Short Time Fourier transform (STFT) were considered to evaluate the power spectrum analysis in each EEG channel of transition or steady-state. Thus, in 2D and 3D transition scenarios, important channels representing EEG frequency bands and brain lobes will be identified. To classify the 2D and 3D transitions, the dominant bands and time intervals representing the maximum difference of PSD were selected. Afterward, effective features were selected by applying statistical methods such as standard deviation (SD), maximum (max), and Hjorth parameters to epochs indicating transition intervals. Ultimately, k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) algorithms were applied to classify 2D_3D and 3D_2D transitions. The frontal, temporal, and partially parietal lobes show 2D_3D and 3D_2D transitions with a good classification success rate. Overall, it was found that Hjorth parameters and LDA algorithms have 71.11% and 77.78% classification success rates for transition and steady-state, respectively.


2021 ◽  
Vol 11 (23) ◽  
pp. 11252
Author(s):  
Ayana Mussabayeva ◽  
Prashant Kumar Jamwal ◽  
Muhammad Tahir Akhtar

Classification of brain signal features is a crucial process for any brain–computer interface (BCI) device, including speller systems. The positive P300 component of visual event-related potentials (ERPs) used in BCI spellers has individual variations of amplitude and latency that further changse with brain abnormalities such as amyotrophic lateral sclerosis (ALS). This leads to the necessity for the users to train the speller themselves, which is a very time-consuming procedure. To achieve subject-independence in a P300 speller, ensemble classifiers are proposed based on classical machine learning models, such as the support vector machine (SVM), linear discriminant analysis (LDA), k-nearest neighbors (kNN), and the convolutional neural network (CNN). The proposed voters were trained on healthy subjects’ data using a generic training approach. Different combinations of electroencephalography (EEG) channels were used for the experiments presented, resulting in single-channel, four-channel, and eight-channel classification. ALS patients’ data represented robust results, achieving more than 90% accuracy when using an ensemble of LDA, kNN, and SVM on four active EEG channels data in the occipital area of the brain. The results provided by the proposed ensemble voting models were on average about 5% more accurate than the results provided by the standalone classifiers. The proposed ensemble models could also outperform boosting algorithms in terms of computational complexity or accuracy. The proposed methodology shows the ability to be subject-independent, which means that the system trained on healthy subjects can be efficiently used for ALS patients. Applying this methodology for online speller systems removes the necessity to retrain the P300 speller.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2814 ◽  
Author(s):  
Xiaoguang Liu ◽  
Huanliang Li ◽  
Cunguang Lou ◽  
Tie Liang ◽  
Xiuling Liu ◽  
...  

Falls are the major cause of fatal and non-fatal injury among people aged more than 65 years. Due to the grave consequences of the occurrence of falls, it is necessary to conduct thorough research on falls. This paper presents a method for the study of fall detection using surface electromyography (sEMG) based on an improved dual parallel channels convolutional neural network (IDPC-CNN). The proposed IDPC-CNN model is designed to identify falls from daily activities using the spectral features of sEMG. Firstly, the classification accuracy of time domain features and spectrograms are compared using linear discriminant analysis (LDA), k-nearest neighbor (KNN) and support vector machine (SVM). Results show that spectrograms provide a richer way to extract pattern information and better classification performance. Therefore, the spectrogram features of sEMG are selected as the input of IDPC-CNN to distinguish between daily activities and falls. Finally, The IDPC-CNN is compared with SVM and three different structure CNNs under the same conditions. Experimental results show that the proposed IDPC-CNN achieves 92.55% accuracy, 95.71% sensitivity and 91.7% specificity. Overall, The IDPC-CNN is more effective than the comparison in accuracy, efficiency, training and generalization.


2020 ◽  
Author(s):  
Negin Manshouri ◽  
Mesut Melek ◽  
Temel Kayıkcıoglu

Abstract Despite the long and extensive history of 3D technology, it has recently attracted the attention of researchers. This technology has become the center of interest of young people because of the real feelings and sensations it creates. People see their environment as 3D because of their eye structure. In this study, it is hypothesized that people lose their perception of depth during sleepy moments and that there is a sudden transition from 3D vision to 2D vision. Regarding these transitions, the EEG signal analysis method was used for deep and comprehensive analysis of 2D and 3D brain signals. In this study, a single-stream anaglyph video of random 2D and 3D segments was prepared. After watching this single video, the obtained EEG recordings were considered for two different analyses: the part involving the critical transition (transition state) and the state analysis of only the 2D versus 3D or 3D versus 2D parts (steady state). The main objective of this study is to see the behavioral changes of brain signals in 2D and 3D transitions. To clarify the impacts of the human brain’s power spectral density (PSD) in 2D-to-3D (2D_3D) and 3D-to-2D (3D_2D) transitions of anaglyph video, nine visual healthy individuals were prepared for testing in this pioneering study. Spectrogram graphs based on short time Fourier transform (STFT) were considered to evaluate the power spectrum analysis in each EEG channel of transition or steady state. Thus, in 2D and 3D transition scenarios, important channels representing EEG frequency bands and brain lobes will be identified. To classify the 2D and 3D transitions, the dominant bands and time intervals representing the maximum difference of PSD were selected. Afterward, effective features were selected by applying statistical methods such as standard deviation, maximum (max) and Hjorth parameters to epochs indicating transition intervals. Ultimately, k-nearest neighbors, support vector machine and linear discriminant analysis (LDA) algorithms were applied to classify 2D_3D and 3D_2D transitions. The frontal, temporal and partially parietal lobes show 2D_3D and 3D_2D transitions with a good classification success rate. Overall, it was found that Hjorth parameters and LDA algorithms have 71.11% and 77.78% classification success rates for transition and steady state, respectively.


Author(s):  
YUN LING ◽  
QIUYAN CAO ◽  
HUA ZHANG

Consumer credit scoring is considered as a crucial issue in the credit industry. SVM has been successfully utilized for classification in many areas including credit scoring. Kernel function is vital when applying SVM to classification problem for enhancing the prediction performance. Currently, most of kernel functions used in SVM are single kernel functions such as the radial basis function (RBF) which has been widely used. On the basis of the existing kernel functions, this paper proposes a multi-kernel function to improve the learning and generalization ability of SVM by integrating several single kernel functions. Chaos particle swarm optimization (CPSO) which is a kind of improved PSO algorithm is utilized to optimize parameters and to select features simultaneously. Two UCI credit data sets are used as the experimental data to evaluate the classification performance of the proposed method.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Saiqiang Xia ◽  
Chaowei Zhang ◽  
Wanyong Cai ◽  
Jun Yang ◽  
Liangfa Hua ◽  
...  

For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To address the classification problem of three different types of aircraft target, a joint multifeature classification method based on the micro-Doppler effect in the echo caused by the target micromotion is proposed in this paper. Through the characteristics analysis of the target simulation echoes obtained from the target scattering point model, four features with obvious distinguishability are extracted from the time domain and frequency domain, respectively, that is, flicker interval, fractal dimension, modulation bandwidth, and second central moment. Then, a support vector machine model will be applied to the classification of the three different types of aircraft. Compared with the conventional method, the proposed method has better classification performance and can significantly improve the classification probability of aircraft target. The simulations are carried out to validate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document