scholarly journals A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5095
Author(s):  
Tibor Petrov ◽  
Lukas Sevcik ◽  
Peter Pocta ◽  
Milan Dado

For more than a decade, communication systems based on the IEEE 802.11p technology—often referred to as Dedicated Short-Range Communications (DSRC)—have been considered a de facto industry standard for Vehicle-to-Infrastructure (V2I) communication. The technology, however, is often criticized for its poor scalability, its suboptimal channel access method, and the need to install additional roadside infrastructure. In 3GPP Release 14, the functionality of existing cellular networks has been extended to support V2X use cases in an attempt to address the well-known drawbacks of the DSRC. In this paper, we present a complex simulation study in order to benchmark both technologies in a V2I communication context and an urban scenario. In particular, we compare the DSRC, LTE in the infrastructural mode (LTE-I), and LTE Device-to-Device (LTE-D2D) mode 3 in terms of the average end-to-end delay and Packet Delivery Ratio (PDR) under varying communication conditions achieved through the variation of the communication perimeter, message generation frequency, and road traffic intensity. The obtained results are put into the context of the networking and connectivity requirements of the most popular V2I C-ITS services. The simulation results indicate that only the DSRC technology is able to support the investigated V2I communication scenarios without any major limitations, achieving an average end-to-end delay of less than 100 milliseconds and a PDR above 96% in all of the investigated simulation scenarios. The LTE-I is applicable for the most of the low-frequency V2I services in a limited communication perimeter (<600 m) and for lower traffic intensities (<1000 vehicles per hour), achieving a delay pf less than 500 milliseconds and a PDR of up to 92%. The LTE-D2D in mode 3 achieves too great of an end-to-end delay (above 1000 milliseconds) and a PDR below 72%; thus, it is not suitable for the V2I services under consideration in a perimeter larger than 200 m. Moreover, the LTE-D2D mode 3 is very sensitive to the distance between the transmitter and its serving eNodeB, which heavily impacts the PDR achieved.

2020 ◽  
Vol 13 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Neha Sharma ◽  
Sherin Zafar ◽  
Usha Batra

Background: Zone Routing Protocol is evolving as an efficient hybrid routing protocol with an extremely high potentiality owing to the integration of two radically different schemes, proactive and reactive in such a way that a balance between control overhead and latency is achieved. Its performance is impacted by various network conditions such as zone radius, network size, mobility, etc. Objective: The research work described in this paper focuses on improving the performance of zone routing protocol by reducing the amount of reactive traffic which is primarily responsible for degraded network performance in case of large networks. The usage of route aggregation approach helps in reducing the routing overhead and also help achieve performance optimization. Methods: The performance of proposed protocol is assessed under varying node size and mobility. Further applied is the firefly algorithm which aims to achieve global optimization that is quite difficult to achieve due to non-linearity of functions and multimodality of algorithms. For performance evaluation a set of benchmark functions are being adopted like, packet delivery ratio and end-to-end delay to validate the proposed approach. Results: Simulation results depict better performance of leading edge firefly algorithm when compared to zone routing protocol and route aggregation based zone routing protocol. The proposed leading edge FRA-ZRP approach shows major improvement between ZRP and FRA-ZRP in Packet Delivery Ratio. FRA-ZRP outperforms traditional ZRP and RA-ZRP even in terms of End to End Delay by reducing the delay and gaining a substantial QOS improvement. Conclusion: The achievement of proposed approach can be credited to the formation on zone head and attainment of route from the head hence reduced queuing of data packets due to control packets, by adopting FRA-ZRP approach. The routing optimized zone routing protocol using Route aggregation approach and FRA augments the QoS, which is the most crucial parameter for routing performance enhancement of MANET.


Data ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
John Sospeter ◽  
Di Wu ◽  
Saajid Hussain ◽  
Tesfanesh Tesfa

Mobile network topology changes dynamically over time because of the high velocity of vehicles. Therefore, the concept of the data dissemination scheme in a VANET environment has become an issue of debate for many research scientists. The main purpose of VANET is to ensure passenger safety application by considering the critical emergency message. The design of the message dissemination protocol should take into consideration effective data dissemination to provide a high packet data ratio and low end-to-end delay by using network resources at a minimal level. In this paper, an effective and efficient adaptive probability data dissemination protocol (EEAPD) is proposed. EEAPD comprises a delay scheme and probabilistic approach. The redundancy ratio (r) metric is used to explain the correlation between road segments and vehicles’ density in rebroadcast probability decisions. The uniqueness of the EEAPD protocol comes from taking into account the number of road segments to decide which nodes are suitable for rebroadcasting the emergency message. The last road segment is considered in the transmission range because of the probability of it having small vehicle density. From simulation results, the proposed protocol provides a better high-packet delivery ratio and low-packet drop ratio by providing better use of the network resource within low end-to-end delay. This protocol is designed for only V2V communication by considering a beaconless strategy. the simulations in this study were conducted using Ns-3.26 and traffic simulator called “SUMO”.


Author(s):  
RENDI DIAN PRASETIA ◽  
DOAN PERDANA ◽  
RIDHA MULDINA NEGARA

ABSTRAKSalah satu permasalahan di kota-kota besar adalah kemacetan lalu lintas yang disebabkan karena tidak mencukupinya ruas jalan, volume kendaraan yang begitu besar, persebaran kendaraan yang tidak merata dan lain-lain. Salah satu solusinya adalah para pengendara dapat menggunakan aplikasi peta digital pada smartphone-nya. Oleh karena itu perlu dilakukan pengimbangan beban trafik kendaraan. Pada penelitian ini akan dibahas mengenai kinerja VANET yang menggunakan protokol routing GPSR dan AODV dengan skema pengimbangan beban trafik kendaraan dengan pengaruh kepadatan node. Perancangan sistem simulasi terbagi menjadi dua subsistem yaitu subsistem mobilitas dan jaringan. Kemudian dilakukan pengimbangan beban trafik kendaraan, dan kinerja VANET akan diamati. Performansi dievaluasi dengan average end to end delay, throughput, dan packet delivery ratio. Nilai rata-rata throughput, PDR, delay untuk GPSR adalah 142.21 Kbps, 87.47 %, dan 82.83 ms. Sedangkan AODV adalah 119.81 Kbps, 86.67 %, dan 103.21 ms. Dari hasil penelitian nilai QoS performansi dari routing protocol GPSR lebih baik dari pada AODV pada VANET.Kata kunci: Vanet, Pengimbangan Beban, GPSR, AODV.ABSTRACTOne of the problems in big cities is congestion. The congestion is caused byinsufficient road segment, large volume of vehicles, unbalanced spread ofvehicles and others. One solution is that riders can use digital map applications on their smartphones. Therefore it is necessary to balancing the traffic load of vehicles. In this research will be discussed about VANET performance using GPSR and AODV routing protocol with vehicle traffic load balancing scheme with node density influence. The design of the simulation system is divided into two subsystems namely mobility and network subsystem. Then balancing the vehicle traffic load, and VANET performance will be observed. Performance is evaluated with the average end to end delay, throughput, and packet delivery ratio. The mean value of throughput, PDR, delay for GPSR respectively 142.21 Kbps, 87.47%, and 82.83 ms. While AODV is 119.81 Kbps, 86.67%, and 103.21 ms. From the simulation results can be concluded that the performance of GPSR is better than AODV on VANET. Keywords: Vanet, Load Balancing, GPSR, AODV.


Author(s):  
Geetanjali Rathee ◽  
Hemraj Saini

Secure routing is considered as one of a key challenge in mesh networks because of its dynamic and broadcasting nature. The broadcasting nature of mesh environment invites number of security vulnerabilities to come and affect the network metrics drastically. Further, any node/link failure of a routed path may reduce the performance of the entire network. A number of secure routing protocols have been proposed by different researchers but enhancement of a single network parameter (i.e. security) may affect another performance metrics significantly i.e. throughput, end to end delay, packet delivery ratio etc. In order to ensure secure routing with improved network metrics, a Secure Buffer based Routing Protocol i.e. SBRP is proposed which ensures better network performance with increased level of security. SBRP protocol uses buffers at alternate positions to fasten re-routing mechanism during node/link failure and ensures the security using AES encryption. Further the protocol is analyzed against mAODV protocol in both static and dynamic environment in terms of security, packet delivery ratio, end to end delay and network throughput.


Author(s):  
Yahya M. Tashtoush ◽  
Mohammad A. Alsmirat ◽  
Tasneem Alghadi

Purpose The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP). Design/methodology/approach GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area. Findings The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent. Originality/value This study is the first to propose to use of geometric sequence in the multipath routing approach.


Author(s):  
Ali H. Wheeb ◽  
Dimitris N. Kanellopoulos

Mobile ad-hoc networks (MANETs) are composed of mobile nodes communicating through wireless medium, without any fixed centralized infrastructure. Providing quality of service (QoS) support to multimedia streaming applications over MANETs is vital. This paper focuses on QoS support, provided by the stream control transmission protocol (SCTP) and the TCP-friendly rate control (TFRC) protocol to multimedia streaming applications over MANETs. In this study, three QoS parameters were considered jointly: (1) packet delivery ratio (PDR), (2) end-to-end delay, (3) and throughput. Specifically, the authors analyzed and compared the simulated performance of the SCTP and TFRC transport protocols for delivering multimedia streaming over MANETs. Two simulation scenarios were conducted to study the impact of traffic load and node speed (mobility) to their performance. Based on the simulation results, the authors found that the PDR and the end-to-end delay of TFRC are slightly better than those of SCTP in both scenarios. Additionally, the performance of SCTP is significantly better than TFRC in terms of throughput.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 52
Author(s):  
Jothy. N ◽  
Jayanthi. K ◽  
Gunasundari. R

In the recent years, VANET is becoming a spectacular research area in wireless networks. The high mobility vehicular node in VANET dynamically changes the network topology resulting in highly unstable vehicle connectivity. This induces network partitioning and hence ensuring link availability remains to be a challenging task.  To surpass these issues, design of efficient VANET routing algorithms is necessary. The routing design for VANET scenario is highly complex and challenging making the existing AODV, greedy, cluster based routing algorithms to suffer from degraded link quality resulting in high end-to-end delay and significant packet loss. Although Opportunistic Neighbor Selection (ONS) scheme proves to be a better routing logic, it does not seem to always ensure link availability at road intersections, particularly in Indian road scenario, where multi road lane discipline is very hard to implement. To overcome these limitations, a combination of Modified Opportunistic Neighbor Selection (MONS) and Vehicle Localization (VL) routing logic for adoption in Indian road sector has been proposed in this paper. This paper addresses the connectivity challenges and provides better solution to achieve improved performance. In this work, two specific scenarios namely: varied mobility/node density rates is considered by treating the other fixed inorder to evaluate the suitability of the proposed logic in terms of packet delivery ratio, end-to-end delay.  


Author(s):  
Linna Oktaviana Sari ◽  
Agusurio Azmi ◽  
Ery Safrianti ◽  
Feranita Jalil

Pekanbaru city is a large area, therefore traffic congestion often occurs due to the density of society’s vehicles. From this problem, it is needed a technology that can exchange information between vehicles. Information Technology that can involve many vehicles with special network types without dependence on an infrastructure is Ad Hoc Network. One type of this network is Vehicular Ad Hoc Network (VANET). VANET is a new concept in enabling communication between Vehicle to Vehicle (V2V). For efficient data packet delivery, VANET requires a routing protocol. In this research, for simulated and analyzed performance is used the Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA) protocol. NS-2 is used to simulated a moved nodes, SUMO software is used to simulated real map of SKA Mall crossroad and parameter the quality of performance routing protocol DSR can determined by End to End Delay, Packet Delivery Ratio (PDR) and Routing Overhead (RO). This simulation uses scenario 100 nodes, 150 nodes, 200 nodes and 250 nodes. The simulation results with the scenario of changing the number of nodes, the DSR routing protocol produces better performance with an average of  End to End Delay is 0.1066 s, average of PDR is 95.45% and average of RO is 1.0076. While the TORA routing protocol has an average of End to End Delay is 0.1163s, average of PDR is 93.49% and average of RO is 1.0801. And in the scenario of node speed changes, the TORA routing protocol produces better performance with an average of End to End Delay is 0.0861 s and average of PDR 97.37%. While the DSR routing protocol is better with an average of RO is 1.0076.


Author(s):  
Nadeem Iqbal ◽  
Mohammad Shafie Bin Abd Latiff ◽  
Shafi’i Muhammad Abdulhamid

Dynamic topology change and decentralized makes routing a challenging task in mobile ad hoc network. Energy efficient routing is the most challenging task in MANET due to limited energy of mobile nodes. Limited power of batteries typically use in MANET, and this is not easy to change or replace while running communication. Network disorder can occur for many factors but in middle of these factors deficiency of energy is the most significant one for causing broken links and early partition of the network. Evenly distribution of power between nodes could enhance the lifetime of the network, which leads to improving overall network transmission and minimizes the connection request. To discourse this issue, we propose an Energy Aware Routing Protocol (EARP) which considers node energy in route searching process and chooses nodes with higher energy levels. The EARP aim is to establish the shortest route from source to destination that contains energy efficient nodes. The performance of EARP is evaluated in terms of packet delivery ratio, network lifetime, end-to-end delay and throughput. Results of simulation done by using NS2 network simulator shows that EARP can achieve both high throughput and delivery ratio, whereas increase network lifetime and decreases end-to-end delay.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


Sign in / Sign up

Export Citation Format

Share Document