scholarly journals Using Off-the-Shelf Graphic Design Software for Validating the Operation of an Image Processing System

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5104
Author(s):  
Jerzy Chrząszcz

Fluorescent markers are widely used to protect banknotes, passports, and other documents. Verification of such documents relies upon visual assessment of the markers revealed by ultraviolet (UV) radiation. However, such an explicit approach is inappropriate in certain circumstances, e.g., when discretely checking people for marks left by a pepper gel thrower. The UV light and fluorescent light must not be visible in such applications, yet reliable detection of the markers must still be performed. This problem was successfully resolved using TRIZ methodology, which led to a patent application. The main idea of the solution is to use low-intensity time-variable UV light for illuminating an object and process the image of the object acquired by a camera to detect colour changes too small to be noticed with the naked eye. This paper describes how popular graphics editors such as Adobe Photoshop Elements were used to validate the system concept devised. Simulation experiments used images taken in both visible and UV light to assess the effectiveness and perceptibility of the detection process. The advantage of such validation comes from using commodity software and performing the experiments without access to a laboratory and without physical samples, which makes this approach especially suitable in pandemic times.

1997 ◽  
Vol 60 (6) ◽  
pp. 639-643 ◽  
Author(s):  
FUENG-LIN KUO ◽  
JOHN B. CAREY ◽  
STEVEN C. RICKE

The effects were investigated of 254-nm UV radiation on populations of Salmonella typhimurium, aerobes, and molds on the shells of eggs. In the first experiment, the CFU of attached S. typhimurium cells on unwashed clean shell eggs were determined after 0, 1, 3, 5, and 7 min of UV treatment (620 μW/cm2) on both ends of the egg. All UV treatments significantly reduced S. typhimurium CFU (P < .01). UVtreatment (620 μW/cm2) in 1-min alternating light and dark cycles for 5 min (three light and two dark) was compared to 0, 3, and 5 min of UV treatment. No significant differences in microbial populations were observed among light and dark cycles and the other UV treatments. In a subsequent experiment, the same UV treatments were utilized to evaluate photoreactivation. After UV exposure, eggs were exposed to 1 h of fluorescent light or I h of darkness or cultured immediately. S. typhimurium CFU were significantly (P < .01) reduced by the UV treatments. However, no significant differences between microbial populations exposed to UV treatment and UV radiation plus photoreactivation were detected. For studies of aerobic bacteria and molds, different UV treatment times (0, 15, and 30 min) at the intensity of 620 μW/cm2 and different intensities (620, 1350, and 1720 μW/cm2) for 15 min were evaluated. Mold CFU per egg were either 0 or 1 for all UV treatments and a 99% reduction of CFU of aerobic bacteria per egg were observed for all UV treatments. It appears from these studies that UV light can significantly reduce populations of S. typhimurium, aerobes, and molds on shell eggs.


2018 ◽  
Vol 762 ◽  
pp. 278-282
Author(s):  
Anzelms Zukuls ◽  
Gundars Mežinskis ◽  
Aigars Reinis ◽  
Ingus Skadins ◽  
Juta Kroica ◽  
...  

Prepared and heat-treated sol-gel ZnO-TiO2 coatings onto microscope glass slides were characterised by atomic force microscopy (AFM), scanning electron microscopy (SEM), as well as absorption spectra of light has been obtained. Thermally treated xerogels were characterised by X-ray diffraction (XRD). As well as their photocatalytic activity using methyl orange (MO) and observing the colour changes over the time in visible light (VIS) and ultra violet (UV) light has been determined. The influence of ZnO concentration on morphology, photocatalytic activity and antibacterial properties of coatings was analysed. The growth of S. epidermidis on the surface of the samples was inhibited due to photocatalytic properties of coatings.


2011 ◽  
Vol 255-260 ◽  
pp. 2257-2261
Author(s):  
Hai Lan Shen ◽  
Zhi Gang Chen ◽  
Zai Liang Chen

This paper mainly discusses the performance of three typical data dissemination schemes in opportunistic sensor networks, which include rumor spread protocol, direct dissemination protocol and the protocol based on evolvement strategy. The main idea of the protocol based on evolvement strategy is that in the process of data dissemination, those nodes with higher dissemination validity are dynamically to substitute the node with lower dissemination validity. This paper makes detail theory analysis on the performance of these protocols. The performance of these protocols also is compared with simulation experiments further more.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Burcu Uyuşur ◽  
Preston T. Snee ◽  
Chunyan Li ◽  
Christophe J. G. Darnault

Knowledge of the fate and transport of nanoparticles in the subsurface environment is limited, as techniques to monitor and visualize the transport and distribution of nanoparticles in porous media and measure their in situ concentrations are lacking. To address these issues, we have developed a light transmission and fluorescence method to visualize and measure in situ concentrations of quantum dot (QD) nanoparticles in variably saturated environments. Calibration cells filled with sand as porous medium and various known water saturation levels and QD concentrations were prepared. By measuring the intensity of the light transmitted through porous media exposed to fluorescent light and by measuring the hue of the light emitted by the QDs under UV light exposure, we obtained simultaneously in situ measurements of water saturation and QD nanoparticle concentrations with high spatial and temporal resolutions. Water saturation was directly proportional to the light intensity. A linear relationship was observed between hue-intensity ratio values and QD concentrations for constant water saturation levels. The advantages and limitations of the light transmission and fluorescence method as well as its implications for visualizing and measuring in situ concentrations of QDs nanoparticles in the subsurface environment are discussed.


1985 ◽  
Vol 48 (2) ◽  
pp. 112-117 ◽  
Author(s):  
ANTHONY J. FANELLI ◽  
JOAN V. BURLEW ◽  
MINA K. GABRIEL

The effectiveness of visible and UV light screens, compounded in polyethylene dairy resin to protect vitamins in milk from photodegradation, was investigated. Three pigments and three UV absorbers were chosen for testing on the basis of their commercial availability, FDA approval for contact with food, and advertised compatibility with polyolefins. In this study, vitamin decomposition was accelerated over what would be experienced in a commercial milk container in order to expedite the testing program and exaggerate differences in effectiveness of the various light screens. Good protection of vitamin A and riboflavin was provided by 0.3 wt % FD&C yellow #5. Protection of ascorbic acid was marginal. Two of the UV absorbers, Cyasorb 531 and Tinuvin 326, afforded protection of vitamin A, but not riboflavin or ascorbic acid. Visible and UV spectra are presented for the vitamins and light screens used in this work.


Les/Wood ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 57-70
Author(s):  
Kavyashree Srinivasa ◽  
Krishna Kumar Pandey ◽  
Marko Petrič

Light induced darkening and deterioration of wood used outdoors is undesirable. Photoprotection of wood could be achieved by using additives that reflect or absorb harmful radiation responsible for degradation. Nano metal oxides have strong absorption in the UV range of solar radiation and good transparency in the visible region. They offer unique benefits in protecting coatings and coated substrates from being degraded by UV radiation. However, to exploit the properties of nanoparticles, homogenous dispersion without agglomeration is necessary. In the present work, the photostabilization of rubberwood surfaces coated with cerium oxide (CeO2) was studied. The nanoparticles were surface functionalized with an organic alkoxy silane (3-glycidyloxypropyltrimethoxy silane) to improve the homogenous distribution in coatings, and the modified nanoparticles were dispersed in isopropanol and polyurethane (PU) coating. Rubberwood surfaces coated with dispersed nanoparticles (concentration 0.5 % to 6 % w/v) were exposed to a fluorescent UVA light source (λ=340 nm) at 60 °C in an accelerated weathering tester for 500 h and 1000 h. Colour changes due to UV light exposure were monitored using a spectrocolourimeter. Dispersion of CeO2 nanoparticles in PU coatings (concentration >2 %) restricted the photoyellowing of wood polymers.


2005 ◽  
Vol 20 (29) ◽  
pp. 6906-6908
Author(s):  
P. VALLANIA ◽  
A. CAPPA ◽  
L. FAVA ◽  
P. GALEOTTI ◽  
O. SAAVEDRA ◽  
...  

The aim of the EUSO (Extreme Universe Space Observatory) experiment is to measure from space the fluorescent light produced by the interaction of Extreme Energy Cosmic Rays (EECRs) with the Earth atmosphere. Besides the fluorescent signal, a huge amount of Čerenkov photons is emitted in a narrow cone hitting the Earth surface, where it is partially diffused. The detection of this diffused signal, in a delayed coincidence with the fluorescent signal, allows the absolute positioning of the EECR track, while the knowledge of the diffusing properties of the surface gives an independent indication of the shower energy. Measuring simultaneously on ground the electromagnetic component, the direct Čerenkov light, and the diffused Čerenkov light over different surfaces, we aim to characterize the emitted signal as a function of the energy and the arrival direction of the Extensive Air Shower (EAS), and to evaluate its possible detection from space. This is implemented by the ULTRA (Uv Light Transmission and Reflection in the Atmosphere) experiment composed by a small EAS array and a UltraViolet (UV) telescope. The experimental setups used in the first runs at sea level and at 1970 m a.s.l. are described and the first preliminary results are presented.


2017 ◽  
Vol 10 (5) ◽  
pp. 257
Author(s):  
R. Crepaldi ◽  
G. M. Titato ◽  
F. M. Lanças ◽  
E. P. Sichieri ◽  
M. Telascrea ◽  
...  

Volatile Organic Compounds (VOCs) constitutes an important class of air pollutants, and benzene is one of the main contaminants of indoor air pollution. Among the methods for the treatment of environments with a high VOCs concentration is the photocatalytic oxidation by TiO2 (anatase) ceramic coated surfaces. The effectiveness of VOCs photodegradation studies using active ceramic tiles made in laboratory is well reported in the literature. However, this has not been reported using commercial tiles, although active ceramics are sold for such a function. In this context, this study proposed the assessment of commercial active ceramic tiles capacity in the photocatalytic degradation of benzene in indoor air. The development of this work arose from two questions: a) if the commercial active ceramic tiles are efficient in the VOCs degradation as the manufacturers claim; b) if they are able to degrade VOCs in indoor building environments. Experiments were conducted in laboratory’s scale, using an adapted simulation chamber. The volatilized benzene entered in contact with the commercial ceramic tile under fluorescent light and ultraviolet (UV) light of 365 nm. Samples of the chamber internal air were collected by adsorption on polydimethylsiloxane fibres in headspace technique (SPME-HS). The evaluation of the benzene degradation occurred by gas chromatography analysis with mass spectrometry (GC-MS). The characterization of commercial active ceramic samples occurred by techniques of X-Ray Diffraction Powder (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometry (EDS). Results showed that, under the experimental conditions, the commercial active ceramic tile was not capable of the benzene photocatalytic oxidation. The ceramic characterization detected very low quantity of TiO2 on ceramic samples, being this fact attributed as the main responsible for the ceramic photocatalytic inactiveness.


2003 ◽  
Vol 1849 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Chiwan Wayne Hsieh ◽  
Chien Kuei Lin

The outdoor ultraviolet (UV) light exposure program according to ASTM D5970 and the indoor UV fluorescent lamp device according to ASTM G154 were used to evaluate the UV degradation in test polyester geogrids. Eighteen months’ worth of data were obtained from the outdoor program. UV-A-340 lamps and exposure condition No. 7 were used for the indoor program. The outdoor exposure program was conducted at Pingtung, in southern Taiwan. The annual sunlight exposure energy was 4,263.50 MJ/m2. The accumulated annual UV-A and UV-B energies were 256.56 and 0.83 MJ/m2, respectively. The tensile strength of the test geogrids decreased as the outdoor exposure increased, but the decrease in the rate of tensile strength also lessened as UV exposure increased. Carbon black and antioxidants contained in the coating materials have a significant influence on the rate of degradation for the test geogrids; 2% carbon black and 1% antioxidant by weight are recommended. The proportions of average retained ultimate tensile strength for 1 month, 12 months, and 18 months of outdoor exposure were 88%, 71%, and 66%, respectively. The tensile strength half-life cycle due to UV exposure was greater than 18 months. Similar behavior was also observed for the elongation at break. However, no clear trend was found for strength at 5% strain due to UV exposure. The reduction factors due to 18 months of outdoor exposure varied from 1.27 to 1.99. The average reduction factor was about 1.60. The reduction in ultimate tensile strength under 180 h of UV exposure in the indoor UV exposure test program was very significant. However, the rate of lost tensile strength for the second and third 180-h UV exposure was very small. The average retained tensile strengths for the geogrids under 180-h and 540-h exposures were 81% and 77%, respectively. The effect of 540-h fluorescent light exposure on the tensile strength of polyester geogrids coated with polyvinyl chloride was equivalent to 151 days of outdoor exposure at Pingtung.


Sign in / Sign up

Export Citation Format

Share Document