scholarly journals Maintenance Strategies for Industrial Multi-Stage Machines: The Study of a Thermoforming Machine

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6809
Author(s):  
Francisco Javier Álvarez García ◽  
David Rodríguez Salgado

The study of reliability, availability and control of industrial manufacturing machines is a constant challenge in the industrial environment. This paper compares the results offered by several maintenance strategies for multi-stage industrial manufacturing machines by analysing a real case of a multi-stage thermoforming machine. Specifically, two strategies based on preventive maintenance, Preventive Programming Maintenance (PPM) and Improve Preventive Programming Maintenance (IPPM) are compared with two new strategies based on predictive maintenance, namely Algorithm Life Optimisation Programming (ALOP) and Digital Behaviour Twin (DBT). The condition of machine components can be assessed with the latter two proposals (ALOP and DBT) using sensors and algorithms, thus providing a warning value for early decision-making before unexpected faults occur. The study shows that the ALOP and DBT models detect unexpected failures early enough, while the PPM and IPPM strategies warn of scheduled component replacement at the end of their life cycle. The ALOP and DBT strategies algorithms can also be valid for managing the maintenance of other multi-stage industrial manufacturing machines. The authors consider that the combination of preventive and predictive maintenance strategies may be an ideal approach because operating conditions affect the mechanical, electrical, electronic and pneumatic components of multi-stage industrial manufacturing machines differently.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5933
Author(s):  
Georgios Falekas ◽  
Athanasios Karlis

State-of-the-art Predictive Maintenance (PM) of Electrical Machines (EMs) focuses on employing Artificial Intelligence (AI) methods with well-established measurement and processing techniques while exploring new combinations, to further establish itself a profitable venture in industry. The latest trend in industrial manufacturing and monitoring is the Digital Twin (DT) which is just now being defined and explored, showing promising results in facilitating the realization of the Industry 4.0 concept. While PM efforts closely resemble suggested DT methodologies and would greatly benefit from improved data handling and availability, a lack of combination regarding the two concepts is detected in literature. In addition, the next-generation-Digital-Twin (nexDT) definition is yet ambiguous. Existing DT reviews discuss broader definitions and include citations often irrelevant to PM. This work aims to redefine the nexDT concept by reviewing latest descriptions in broader literature while establishing a specialized denotation for EM manufacturing, PM, and control, encapsulating most of the relevant work in the process, and providing a new definition specifically catered to PM, serving as a foundation for future endeavors. A brief review of both DT research and PM state-of-the-art spanning the last five years is presented, followed by the conjunction of core concepts into a definitive description. Finally, surmised benefits and future work prospects are reported, especially focused on enabling PM state-of-the-art in AI techniques.


2009 ◽  
Vol 71-73 ◽  
pp. 361-364 ◽  
Author(s):  
Mariekie Gericke ◽  
Y. Govender ◽  
A. Pinches

The focus of this paper is on the treatment of low-grade chalcopyrite-pyrite containing concentrates. The bioleaching of chalcopyrite is a major challenge due to slow copper leach kinetics and poor copper extractions. Bioleaching tests were carried out in bench-scale piloting facilities, comprising fully controlled multi-stage continuously operated reactor systems using moderate thermophile and thermophile consortia under both uncontrolled and controlled redox potential conditions. Bioleaching operating conditions and control strategies have been identified, which have the potential to significantly increase the rate of Cu leaching and to reduce process costs by allowing control of the amount of pyrite oxidised.


2013 ◽  
Vol 312 ◽  
pp. 777-781
Author(s):  
Lu Ping Liu

In the modern industrial manufacturing field, PLC plays a very important role. In this paper, through analyzing the working process and control requirements of plate shearing machine and using PLC control technology, the automation design of the plate shearing machine control system is realized.


2018 ◽  
Vol 06 (02) ◽  
pp. 95-118 ◽  
Author(s):  
Mohammadreza Radmanesh ◽  
Manish Kumar ◽  
Paul H. Guentert ◽  
Mohammad Sarim

Unmanned aerial vehicles (UAVs) have recently attracted the attention of researchers due to their numerous potential civilian applications. However, current robot navigation technologies need further development for efficient application to various scenarios. One key issue is the “Sense and Avoid” capability, currently of immense interest to researchers. Such a capability is required for safe operation of UAVs in civilian domain. For autonomous decision making and control of UAVs, several path-planning and navigation algorithms have been proposed. This is a challenging task to be carried out in a 3D environment, especially while accounting for sensor noise, uncertainties in operating conditions, and real-time applicability. Heuristic and non-heuristic or exact techniques are the two solution methodologies that categorize path-planning algorithms. The aim of this paper is to carry out a comprehensive and comparative study of existing UAV path-planning algorithms for both methods. Three different obstacle scenarios test the performance of each algorithm. We have compared the computational time and solution optimality, and tested each algorithm with variations in the availability of global and local obstacle information.


Author(s):  
Lisa Hühn ◽  
Oliver Munz ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer

Abstract Labyrinth seals are used to prevent and control the mass flow rate between rotating components. Due to thermally and mechanically induced expansions during operation and transient flight maneuvers, a contact, the so-called rubbing process, between rotor and stator cannot be excluded. A large amount of rubbing process data concerning numerical and experimental investigations is available in public literature as well as at the Institute of Thermal Turbomachinery (ITS). The investigations were carried out for different operating conditions, material combinations, and component geometries. In combination with the experiments presented in this paper, the effects of the different variables on load due to rubbing are compared, and discussed with the focus lying on the material combination. The influence of the material on the loads can be identified as detailed as never before. For example, the contact forces in the current experiments are higher due to a higher temperature resistance of Young’s modulus. The analysis will also be based on the rubbing of turbine blades. Design guidelines are derived for labyrinth seals with improved properties regarding tolerance of rub events. Based on the knowledge obtained, guidelines for designing reliable labyrinth seals for future engines are discussed.


Sign in / Sign up

Export Citation Format

Share Document