scholarly journals Comparison of Mathematical Methods for Compensating a Current Signal under Current Transformers Saturation Conditions

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7273
Author(s):  
Ismoil Odinaev ◽  
Aminjon Gulakhmadov ◽  
Pavel Murzin ◽  
Alexander Tavlintsev ◽  
Sergey Semenenko ◽  
...  

Current measurements from electromagnetic current transformers are essential for the construction of secondary circuit systems, including for protection systems. Magnetic core of these transformers are at risk of saturation, as a result of which maloperation of protection algorithms can possibly occur. The paper considers methods for recovering a current signal in the saturation mode of current transformers. The advantages and disadvantages of methods for detecting the occurrence of current transformers core saturation are described. A comparative analysis of mathematical methods for recovering a current signal is given, their approbation was carried out, and the most promising of them was revealed. The stability and sensitivity of recovery methods were tested by adding white noise to the measured signal and taking into account the initial flux density (remanent magnetization) in the current transformers core. Their comparison is given on the basis of angular, magnitude, and total errors at a given simulation interval.

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Margarida Lorigo ◽  
Elisa Cairrao

Abstract Background Sunlight is one of the main harmful exogenous factors that induce the reactive oxygen species formation. The human skin is the first line of photoprotection against harmful exogenous factors, such as UV radiations. The topical application of sunscreens, containing UV-B filters, is widely used to protect against UV-induced damage. Octylmethoxycinnamate is the world’s most widely used UV-B filter in sunscreens. However, recent studies have demonstrated that this substance is an endocrine disruptor compound and with potential to damage DNA. Thus, the safety of this organic filter is a current concern for human health, and it was urgent to develop new photoprotective strategies. In this sense, due to the potential to neutralize the UV-induced free radicals, the use of antioxidants as UV filter stabilizers presented as a novel promising strategy. Research The purpose of this review was to assess the use of antioxidants as stabilizers for UV-B filter octylmethoxycinnamate. For this, we discuss the chemical and physical characteristics of UV-B filter octylmethoxycinnamate, emphasizing the stability, photostability, and reactivity of this UV filter. The use of antioxidants in sunscreens will also be addressed, from a perspective of the main characteristics that allowed their use in sunscreen formulations. Then, the concomitant use of both was described from a historical and physical chemical perspective, always emphasizing the advantages and disadvantages of this association. Conclusions The combination of antioxidants with UV-B filter octylmethoxycinnamate in appropriated formulations represents a viable strategy to protect the human skin against UV-induced damage.


2018 ◽  
Vol 212 ◽  
pp. 01035 ◽  
Author(s):  
Viktor Kuprienko

The problem is to ensure the stability of the differential protection functioning at deep saturation of the cores of electromagnetic current transformers. The errors of current transformers support the greatest influence on the operation of differential protections. Features of the differential protection operation at deep saturation of current transformers in short-circuit transient modes are considered. Comparison results of various algorithms for the formation of a bias signal are given. The control capability of the bias signal generation algorithm was analyzed. The harmonic composition of the differential current on the mathematical model of two-arm differential protection in the transient mode with external and internal short circuits at saturation of the current transformers of one arm was investigated. The stability of the differential protection functioning can be enhanced by the selectivity of the bias signal generation algorithm. A bias signal control criterion using a relative level of higher harmonics to a differential signal was proposed.


2020 ◽  
Vol 4 (141) ◽  
pp. 114-122
Author(s):  
DAR’YA LEBEDEVA ◽  
◽  
ANNA KARPUNICHEVA

Large forces and significant thermal effects are created on the rolls when rolling sheets. The higher the stability of the rolls, the less downtime during their rerolling and higher productivity. (Research purpose) The research purpose is in analyzing the ways of restoring rolls and choose the most appropriate method for restoring these parts. (Materials and methods) The article presents the analysis of the scientific and technical literature on the topic of rolling production, methods for restoring large-sized machine parts of machine-building and metallurgical industries that work in difficult conditions and are subject to a high degree of wear. Authors try to solve the problem by means of comparative and logical analysis based on theoretical and empirical methods of scientific research. (Results and discussion) The article presents two groups of methods for restoring rolled rolls: banding and surfacing the working layer of the roll. Authors have analyzed each method in terms of technology, equipment, and feasibility. The article presents the advantages and disadvantages of the methods under consideration. (Conclusions) The most acceptable way to restore parts with a high degree of wear is surfacing. It is most efficient to apply submerged surfacing using an additional hot additive. Such surfacing, despite some complication of the equipment design, allows to deposit the metal on the roll with low heat input and in most cases in one pass. Surfacing using an additional hot additive allows to increase the productivity of the process by up to 250 percent while reducing the penetration depth by 2-3 times and saving energy by up to 40 percent.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


Author(s):  
Victoria Griffiths ◽  
Niazy Al Assaf ◽  
Rizwan Khan

Abstract Background Claudin proteins are a component of tight junctions found in cell-cell adhesion complexes. A central feature of necrotizing enterocolitis (NEC) is intestinal permeability, with changes to claudin proteins potentially contributing to intestinal instability, inflammation, and the progression of NEC. A current area of interest is the development of a novel, noninvasive biomarker for the detection of NEC in neonates at risk of developing this disease, in order to reduce morbidity and mortality through earlier intervention. Aims This review aims to explore the relevance of claudin proteins in the pathophysiology of NEC and their potential usefulness as a biomarker. Methods This review was conducted using the search terms “claudin” + “necrotizing enterocolitis”, with 27 papers selected for review. Results Claudin proteins appear to have a role in the stability of the gut epithelium through the regulation of intestinal permeability, maturity, and inflammation. Formula feeding has been shown to promote inflammation and result in changes to claudin proteins, while breastfeeding and certain nutritional supplements lead to reduced inflammation and improved intestinal stability as demonstrated through changes to claudin protein expression. Preliminary studies in human neonates suggest that urinary claudin measurements may be used to predict the development of NEC. Conclusions Alterations to claudin proteins may reflect changes seen to intestinal permeability and inflammation in the context of NEC. Further research is necessary to understand the relevance of claudin proteins in the pathophysiology of NEC and their use as a biomarker.


2021 ◽  
Vol 14 (1) ◽  
pp. 10-16
Author(s):  
Aleksandr Kozyukov ◽  
Vladimir Zolnikov ◽  
Svetlana Evdokimova ◽  
Oleg Kvasov ◽  
Konstantin Yakovlev ◽  
...  

The article discusses algorithmic methods for ensuring the fault tolerance of the electronic component base (ECB). The protection methods used in regular and irregular structures are described. The essence of Hamming code algorithms, composite code, error correction and detection codes is revealed. The advantages and disadvantages of using arithmetic residual code, the method of redundancy at the level of program code fragments, are shown.


Author(s):  
Anruo Zhong ◽  
Xiaoming Lan ◽  
Yangfan Hu ◽  
Biao Wang

Abstract Magnetic skyrmions are attracting much attention due to their nontrivial topology and high mobility to electric current. Nevertheless, suppression of the skyrmion Hall effect and maintaining high velocity of skyrmions with low energy cost are two major challenges concerning skyrmion-based spintronic devices. Here we show theoretically that in a nano-beam suffering appropriate bending moment, both Bloch-type and Néel-type skyrmions move with a vanishing Hall angle under a current density smaller than that required when the bending is absent. Moreover, bending alone can be used to move skyrmions, whose velocity is solved analytically from the Thiele equation. Generally speaking, inhomogeneous elastic fields affect the stability and dynamics of skyrmions, where the local stability is dominantly determined by the local bulk stress. These findings throw new light on how to drive skyrmions straightly with lower energy cost, which is vital for utilizing skyrmions as information carriers.


Author(s):  
K. Al-Durgham ◽  
D. D. Lichti ◽  
I. Detchev ◽  
G. Kuntze ◽  
J. L. Ronsky

A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system’s calibration parameters. This is essential to validate the repeatability of the parameters’ estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system – for a single camera analysis – was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors’ best knowledge that this work is the first to address the topic of DF stability analysis.


2014 ◽  
Vol 672-674 ◽  
pp. 984-988
Author(s):  
Biao Su ◽  
Li Xue Li ◽  
Yi Hui Zheng ◽  
Xin Wang ◽  
Yan Liu ◽  
...  

Electronic current transformers are more suitable for the development of power system compared with traditional electromagnetic current transformers. Rogowski coil current transformer is one of three electric current transformers. According to the measurement principle of Rogowski coils, the equivalent circuit of PCB Rogowski coils is analyzed. By using four PCB Rogowski coils combined, a PCB Rogowski coil current transformer is designed and tested. The results show that the designed PCB Rogowski coil transformer has good linearity and high sensitivity and measurement accuracy and it can meet the requirement of power system.


Sign in / Sign up

Export Citation Format

Share Document