scholarly journals Effect of the Substrate Crystallinity on Morphological and Magnetic Properties of Fe70Pd30 Nanoparticles Obtained by the Solid-State Dewetting

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7420
Author(s):  
Gabriele Barrera ◽  
Federica Celegato ◽  
Matteo Cialone ◽  
Marco Coïsson ◽  
Paola Rizzi ◽  
...  

Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and “top-down” nanofabrication technique able to induce a controlled morphological transformation of a continuous thin film into an ordered nanoparticle array. Here, magnetic Fe70Pd30 thin film with 30 nm thickness is deposited by the co-sputtering technique on a monocrystalline (MgO) or amorphous (Si3N4) substrate and, subsequently, annealed to promote the dewetting process. The different substrate properties are able to tune the activation thermal energy of the dewetting process, which can be tuned by depositing on substrates with different microstructures. In this way, it is possible to tailor the final morphology of FePd nanoparticles as observed by advanced microscopy techniques (SEM and AFM). The average size and height of the nanoparticles are in the ranges 150–300 nm and 150–200 nm, respectively. Moreover, the induced spatial confinement of magnetic materials in almost-spherical nanoparticles strongly affects the magnetic properties as observed by in-plane and out-of-plane hysteresis loops. Magnetization reversal in dewetted FePd nanoparticles is mainly characterized by a rotational mechanism leading to a slower approach to saturation and smaller value of the magnetic susceptibility than the as-deposited thin film.

2019 ◽  
Vol 15 (1) ◽  
pp. 21-27
Author(s):  
E. A. Volegova ◽  
T. I. Maslova ◽  
V. O. Vas’kovskiy ◽  
A. S. Volegov

Introduction The introduction indicates the need for the use of permanent magnets in various technology fields. The necessity of measuring the limit magnetic hysteresis loop for the correct calculation of magnetic system parameters is considered. The main sources of error when measuring boundary hysteresis loops are given. The practical impossibility of verifying blocks of magnetic measuring systems element-by-element is noted. This paper is devoted to the development of reference materials (RMs) for the magnetic properties of hard magnetic materials based on Nd2Fe14B, a highly anisotropic intermetallic compound.Materials and measuring methods Nd-Fe-B permanent magnets were selected as the material for developing the RMs. RM certified values were established using a CYCLE‑3 apparatus included in the GET 198‑2017 State Primary Measurement Standard for units of magnetic loss power, magnetic induction of constant magnetic field in a range from 0.1 to 2.5 T and magnetic flux in a range from 1·10–5 to 3·10–2 Wb.Results and its discussion Based on the experimentally obtained boundary hysteresis loops, the magnetic characteristics were evaluated, the interval of permitted certified values was set, the measurement result uncertainty of certified values was estimated, the RM validity period was established and the first RM batch was released.Conclusion On the basis of conducted studies, the RM type for magnetic properties of NdFeB alloy-based hard magnetic materials was approved (MS NdFeB set). The developed RM set was registered under the numbers GSO 11059–2018 / GSO 11062–2018 in the State RM Register of the Russian Federation.


2016 ◽  
Author(s):  
T. Tsuchiya ◽  
K. Terabe ◽  
M. Ochi ◽  
T. Higuchi ◽  
M. Osada ◽  
...  

2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Atika Arshad ◽  
Rumana Tasnim ◽  
Sheroz Khan ◽  
A.H.M Zahirul Alam

The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired frequency of operation for magneto resistive applications, magneto-resistive sensors and for an extensive range of biomedical sensor application. 


Author(s):  
Yury Khaydukov ◽  
Olaf Soltwedel ◽  
Thomas Keller

The high resolution neutron/ X-ray contrast reflectometer NREX, operated by the Max Planck Institute for Solid State Research, is designed for the determination of structural and magnetic properties of surfaces, interfaces, and thin film systems.


1999 ◽  
Vol 577 ◽  
Author(s):  
C. Sangregorio ◽  
E. E. Carpenter ◽  
C. J. O'connor

ABSTRACTThe magnetic properties of nanosized antiferromagnetic particles of KMnF3 are presented. The particles were synthesized using the microemulsion technique, i.e. by using the aqueous core of reverse micelles as constrained microreactors for the precipitation of the particles. The structural characterization of the samples, accomplished by TEM and XRD, reveal that the samples consist of cubic-shaped, crystalline KMnF3 nanoparticles of uniform size. Control over the average size of the particles was achieved by changing the reaction time. Four different samples of average size in the range 13-35 nm were prepared. DC magnetic susceptibility measurements revealed superparamagnetic behavior of the particles. Hysteresis loops measured after field cooling the samples through TN were shifted. The shift is ascribed to the exchange coupling between the antiferromagnetic core of the particles and the uncompensated spin shell surrounding it.


Author(s):  
Elena A. Gan’shina ◽  
Vladimir V. Garshin ◽  
Nikita S. Builov ◽  
Nikolay N. Zubar ◽  
Alexandr V. Sitnikov ◽  
...  

Magnetic properties in amorphous multilayer nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 with different content of the CoFeB magnetic alloy in metal-composite layers and inverse location of non-metallic phases C and SiO2 in composite layers or in interlayers, were investigated by magneto-optical methods in the transversal Kerr effect (TKE) geometry.Using the spectral and field dependences of the transversal Kerr effect TKE, it has been established that in the samples of both magnetic multilayer nanostructures (MLNS) the magneto-optical response and magnetic order are determined by the phase composition of the composite layers.In samples of MLNS [(CoFeB)60C40/SiO2]200 with a post-percolation content of metal clusters in metal-composite layers, the maximum of absolute TKE values decrease by about 2.5 times compared with the initial amorphous Co40Fe40B20 alloy, while the field dependences of TKE in samples of this MLNS has features that are characteristic of soft ferromagnets.In samples of MLNS [(CoFeB)34(SiO2)66/C]46 with a pre-percolation content of metal clusters in the oxide SiO2–x matrix of metal-composite layers, the TKE spectral dependences fundamentally differed from the TKE of the initial amorphous Co40Fe40B20 alloy both in shape and sign. The field dependences of the TKE in the samples of this MLN were linear, characteristic of superparamagnets.       References1. Neugebauer C. A. Resistivity of cermet filmscontaining oxides of silicon. Thin Solid Films. 1970;6(6):443–447. DOI: https://doi.org/10.1016/0040-6090(70)90005-22. Gittleman J. L., Goldstain Y., Bozowski S.Magnetic roperties of granular nikel films. PhysicalReview B. 1972;5(9): 3609–3621. DOI: https://doi.org/10.1103/physrevb.5.36093. Abeles B., Sheng P., Coutts M. D., Arie Y.Structural and electrical properties of granular metalfilms. Advances in Physics. 1975;24(3): 407–461. DOI:https://doi.org/10.1080/000187375001014314. Helman J. S., Abeles B. Tunneling of spinpolarizedelectrons and magnetoresistance in granularNi films. Physical Review Letters. 1976;37(21): 1429–1433. DOI: https://doi.org/10.1103/physrevlett.37.14295. Sheng P., Abeles B., Arie Y. Hopping conductivityin granular Metals. Physical Review Letters,1973;31(1):44–47. DOI: https://doi.org/10.1103/physrevlett.31.446. Domashevskaya E. P., Builov N. S., Terekhov V. A.,Barkov K. A., Sitnikov V. G. Electronic structure andphase composition of dielectric interlayers inmultilayer amorphous nanostructure [(CoFeB)60C40/SiO2]200. Physics of the Solid State. 2017;59(1): 168–173.DOI: https://doi.org/10.1134/S10637834170100617. Domashevskaya E. P., Builov N. S., Terekhov V. A.,Barkov K. I., Sitnikov V. G., Kalinin Y. E. Electronicstructure and phase composition of silicon oxide inthe metal-containing composite layers of a[(Co40Fe40B20)34(SiO2)66/C]46 multilayer amorphousnanostructure with carbon interlayers. InorganicMaterials. 2017;53(9): 930–936. DOI: https://doi.org/10.1134/S00201685170900608. Domashevskaya E. P., Builov N. S., Lukin A. N.,Sitnikov V. G. Investigation of interatomic interactionin multilayer nanostructures [(CoFeB)60C40/SiO2]200 and[(Co40Fe40B20)34(SiO2)66/C]46 with composite metalcontaininglayers by IR spectroscopy. InorganicMaterials. 2018;54(2): 153–159. DOI: https://doi.org/10.7868/s0002337x180200699. Domashevskaya E. P., Builov N. S., Ivkov S. A.,Guda A. A., Trigub A. L., Chukavin A. I. XPS and XASinvestigations of multilayer nanostructures based onthe amorphous CoFeB alloy. Journal of ElectronSpectroscopy and Related Phenomena. 2020;243:146979–146989. DOI: https://doi.org/10.1016/j.elspec.2020.14697910. Vonsovskii S. V. Magnetizm [Magnetism].Moscow: Nauka Publ.; 1971. 1032 p.11. Gan’shina E., Granovsky A., Gushin V.,Kuzmichev M., Podrugin P., Kravetz A., Shipil E. Opticaland magneto-optical spectra of magnetic granularalloys. Physica A: Statistical Mechanics and itsApplications. 1997;241(1-2): 45–51. DOI: https://doi.org/10.1016/s0378-4371(97)00057-512. Gan’shina E. A., Kim C. G., Kim C. O.,Kochneva M. Yu., Perov N. S., Sheverdyaeva P. M.Magnetostatic and magneto-optical properties of Cobasedamorphous ribbons. Journal of Magnetism andMagnetic Materials. 2002;239(1-3): 484–486. DOI:https://doi.org/10.1016/s0304-8853(01)00665-513. Gan’shina E. A., Vashuk M. V. Evolution of theoptical and magnetooptical properties of amorphousmetal-insulator nanocomposites. Journal ofExperimental and Theoretical Physics. 2004;98:1027–1036. DOI: https://doi.org/10.1134/1.176757114. Shalygina E. E., Kharlamova A. M., KurlyandskayaG. V., Svalov A. V. Exchange interaction in Co/Bi/Co thin-film systems with Bi interlayer. Journal ofMagnetism and Magnetic Materials. 2017;440: 136–139.DOI: https://doi.org/10.1016/j.jmmm.2016.12.14415. Gan’shina E., Garshin V., Perova N., Zykov G.,Aleshnikov A., Kalinin Yu., Sitnikov A. Magnetoopticalproperties of nanocomposites ferromagneticcarbon.Journal of Magnetism and Magnetic Materials.2019;470:135–138. DOI: https://doi.org/10.1016/j.jmmm.2017.11.03816. Buravtsova V. E., Ganshina E. A., Kirov S. A., et.al. Magnetooptical properties of layer-by-layerdeposited ferromagnet – dielectric nanocomposites.Materials Sciences and Applications. 2013;4(4): 16–23.DOI: http://dx.doi.org/10.4236/msa.2013.44A00317. Stognei O. V., Kalinin Yu. E., Zolotukhin I. V.,Sitnikov A. V., Wagner V., Ahlers F. J. Low temperaturebehaviour of the giant magnetoresistivity in CoFeB– SiOn granular composites. Journal of Physics:Condensed Matter. 2003;15(24): 4267–4772. DOI:https://doi.org/10.1088/0953-8984/15/24/32018. Stognei O. V., Sitnikov A. V. Anisotropy ofamorphous nanogranular composites CoNbTa-SiO nand CoFeB-SiOn. Physics Solid State. 2010;52: 2518–2526. DOI: https://doi.org/10.1134/S106378341012012719. Dunets O. V., Kalinin Y. E., Kashirin M. A. et al.Electrical and magnetic performance of multilayerstructures based on (Co40Fe40B20)33.9(SiO2)66.1 composite.Technical Physics. 2013;58: 1352–1357. DOI: https://doi.org/10.1134/S106378421309013220. Gridnev S. A., Kalinin Yu. E., Sitnikov A. V.,Stognei O. V. Nelineinye yavleniya v nano imikrogeterogennykh sistemakh [Nonlinear phenomenain nano and microheterogeneous systems]. Moscow:BINOM, Laboratoriya znanii Publ.; 2012. 352 p.21. Mørup S., Tronc E. Superparamagneticrelaxation of weakly interacting particles. PhysicalReview Letters. 1994;72(20): 3278–3285. DOI: https://doi.org/10.1103/PhysRevLett.72.327822. Coey J. M. D., Khalafalla D. Superparamagneticg-Fe2O3. Physica Status Solidi (a) 1972;11(1): 229–241.DOI: https://doi.org/10.1002/pssa.221011012523. Brown W. F. Thermal fluctuations of a singledomainparticle. Physical Review. 1963;130(5): 1677–1685. DOI: https://doi.org/10.1103/physrev.130.1677


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3860
Author(s):  
Chen Cheng ◽  
Jianfeng Dai ◽  
Zengpeng Li ◽  
Wei Feng

The morphology of magnetic materials has a great influence on the properties, which is attributed to the magnetic anisotropy of the materials. Therefore, it is worth studying the fabrication of the aligned fiber and the change of its domain distribution. Nanoparticles and nanofibers were prepared by the hydrothermal and electrospinning methods, respectively. At the same time, the arranged nanofibers were collected by the drum collecting device. After the same annealing at 700 °C, it was found that the diameter of fibers collected by different collecting drums is similar. By studying the hysteresis loops of nanoarrays, it was found that they had strong anisotropy. The easy axis was parallel to the long axis, the Hc and Mr of the easy axis and the hard axis were 1330.5 Oe, 32.39 Am2/kg, and 857.2 Oe, 24.8 Am2/kg, respectively. Due to the anisotropy of the shape and the interaction between the particles, the Hc could not be enhanced. Therefore, the Ms and Hc of the nanoparticles were 80.23 Am2/kg and 979.3 Oe, respectively. The hysteresis loop and the change of magnetic moment during the demagnetization of the CoFe2O4 nanofiber array were simulated via micromagnetic software. The simulated Hc was 1480 Oe, which was similar to the experimental value.


2015 ◽  
Vol 220-221 ◽  
pp. 725-730
Author(s):  
Roman Szewczyk ◽  
Dorota Jackiewicz

The application of magnetic-property oriented methods for non-destructive testing is very promising due to its low cost and robustness. This paper presents the methodology of simulating the magnetic properties of martensitic X30Cr13 steel applying the extended Jiles-Atherton model. On the basis of experimental measurements, the parameters of the Jiles-Atherton model were determined by an evolutionary strategy together with gradient optimisation. A very good agreement between experimental hysteresis loops and the model was confirmed by a high value of determination coefficient. The presented results open new possibilities of developing methods for non-destructive testing of energetic turbines made of X30Cr13 stainless steel. Moreover, quantitative simulation gives a possibility of a better understanding of magnetisation processes.


Sign in / Sign up

Export Citation Format

Share Document