scholarly journals Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7720
Author(s):  
Manuel Andrés Vélez-Guerrero ◽  
Mauro Callejas-Cuervo ◽  
Stefano Mazzoleni

Mechatronic systems that allow motorized activation in robotic exoskeletons have evolved according to their specific applications and the characteristics of the actuation system, including parameters such as size, mechanical properties, efficiency, and power draw. Additionally, different control strategies and methods could be implemented in various electronic devices to improve the performance and usability of these devices, which is desirable in any application. This paper proposes the integration and testing of a high-torque, servo-driven joint and its electronic controller, exposing its use in a robotic exoskeleton prototype as a case study. Following a brief background review, the development and implementation of the proposal are presented, allowing the control of the servo-driven joint in terms of torque, rotational velocity, and position through a straightforward, closed-loop control architecture. Additionally, the stability and performance of the servo-driven joint were assessed with and without load. In conclusion and based on the obtained results, the servo-driven joint and its control system demonstrate consistent performance under the proposed test protocol (max values: angular velocity 97 °/s, torque 33 Nm, positioning RMSE 1.46°), enabling this approach for use in various applications related to robotic exoskeletons, including human performance enhancement, rehabilitation, or support for daily living activities.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1069
Author(s):  
Deyby Huamanchahua ◽  
Adriana Vargas-Martinez ◽  
Ricardo Ramirez-Mendoza

Exoskeletons are an external structural mechanism with joints and links that work in tandem with the user, which increases, reinforces, or restores human performance. Virtual Reality can be used to produce environments, in which the intensity of practice and feedback on performance can be manipulated to provide tailored motor training. Will it be possible to combine both technologies and have them synchronized to reach better performance? This paper consists of the kinematics analysis for the position and orientation synchronization between an n DoF upper-limb exoskeleton pose and a projected object in an immersive virtual reality environment using a VR headset. To achieve this goal, the exoskeletal mechanism is analyzed using Euler angles and the Pieper technique to obtain the equations that lead to its orientation, forward, and inverse kinematic models. This paper extends the author’s previous work by using an early stage upper-limb exoskeleton prototype for the synchronization process.


Author(s):  
Rajiv Chaudhary ◽  
◽  
Alok Kumar Singh

Tracking the path of development in different Engineering disciplines, it can be easily observed that, right from the primitive stage, several tools, devices, and techniques may be identified, which happened by virtue of the evolution of human intelligence, getting transformed into various engineering applications. Although, later different engineering disciplines evolved, where most of the exhaustive development could be undertaken in that discipline. Likewise, in the field of mechanical engineering to various types of mechanical systems, according to the requirement in that field, were developed, in order to provide support of mechanization. Prime movers used to be an important part of these mechanical systems, which provided energy input as well as actuation required for providing the machines the desired kinematics. Most of the mechanical systems developed has been operated by conventional engine system using one or other fuel. Apart from the actuation by mechanical means, there are other means also through which mechanical actuation with better control, flexibility, and manipulation may be utilized in mechanical systems. A different category of systems, called Mechatronic systems has been developed in the recent past, which involves the vivid scope of use of techniques, devices, and components generally used in various other engineering fields of electrical, electronics, hydraulics, and pneumatics, etc. Subsequently, there have been several inventions, design & development which have added new levels in every field. Mechanical systems have been generally composed of various mechanical elements, which are designed to follow certain kinematics. The performance of the Actuation system plays an important role in the overall performance of the mechanical systems. There are several alternative actuation systems, which are not mechanical. These actuation systems may be categorized into electrical, electronics, hydraulic and pneumatic types. The features of these actuation systems, are so peculiar, that typical kinematic movement may be manipulated that too with more precision. Better control of mechanical systems may be realized, which is otherwise difficult with mechanical systems. In this paper, an effort has been made to review the possibilities, prospects as well as scope with various actuation systems.


Author(s):  
William B. Johnson

Human Factors and ergonomics professionals are often asked to “show” how their research has affected on-the-job human performance. They are asked to show measurable changes in human effectiveness and efficiency at work. There is always the demand for HF&E researchers to create procedures and tools that can guide non-human factors personnel to make the “right” human-centered decisions. This symposium will show and distribute such tools that have been designed and tested in an aviation maintenance environment. For over six years now, the Federal Aviation Administration Office of Aviation Medicine has conducted an extensive research program centered on human factors in aviation maintenance and inspection. The research program has earned a reputation of demonstrating a “hands-on” understanding of aviation maintenance and maintaining a close working relationship with all segments of the industry. The symposium will begin with an overview of FAA-sponsored research results applied to aviation maintenance and safety over the past six years. In the second paper the Human Factors Guide for Aviation Maintenance, completed in 1995, will be described. The third presentation will demonstrate a CD-ROM version of the Guide. The presentation shall also discuss human-computer interface issues pertinent to developing interactive multi-media information systems. The final presentation will show a multi-media software package to conduct ergonomics audits in a variety of industrial environments. The system has evolved from three years of ergonomics audit research in aviation maintenance workplaces. Each of the session presentations will demonstrate and distribute HF&E tools to session attendees.


Author(s):  
Anton Pil ◽  
Haruhiko Asada

Abstract This paper introduces an experimental recursive method for simultaneously changing both the mechanical structure and control design of mechatronic systems in order to improve the system’s overall performance. The method improves a system’s closed-loop control specifications through recursive concurrent structure reinforcement and control gain optimization. By using a process of structural reinforcement, a single prototype structure can be used repeatedly until the system performance goals are achieved. To determine the optimal incremental structure changes, a recursive algorithm based on a gradient descent method and a parameter estimation theory is employed. After the incremental structure reinforcements are applied, the control parameters are optimized with respect to multiple control specifications. Next, the resulting system incorporating the structure and control changes is tested and compared with the desired level of performance. The entire process consisting of experimental evaluation, data analysis, and structure reinforcement is repeated until the system performance achieves the desired level. Simulation experiments are successful in changing both the structural and control parameters of a simplified positioning system and show improvement in the system’s overall settling time.


Advances in cognitive neuroscience, engineering, and related fields suggest new ways of optimizing human performance. Especially for organizations that operate in high-stakes, high-stress, and competitive settings, helping individual workers and teams improve and sustain performance represents a desirable outcome. Moreover, to the extent that strategies to improve performance allow individuals to grow and flourish, enhancing performance is also a desirable outcome for workers. This volume addresses state-of-the-art scientifically grounded approaches to optimizing human performance. Collectively, the topics addressed integrate performance optimization strategies across several disciplines that speak to performance enhancement. A common theme is the need to include ethical considerations in any decision to implement human performance optimization strategies. The book concludes with a summary and synthesis of currently attainable approaches to performance enhancement and approaches that may emerge in the near future based on further research and development.


2017 ◽  
Vol 42 (10) ◽  
pp. 1122-1125 ◽  
Author(s):  
Francisco Cuenca-Fernández ◽  
Ian C. Smith ◽  
Matthew J. Jordan ◽  
Brian R. MacIntosh ◽  
Gracia López-Contreras ◽  
...  

Fifteen trained athletes were assessed for postactivation performance enhancement (PAPE) of squat jumps (SJs) and power push-ups (PPUs) following upper body activation, lower body activation, upper and lower body activation, and rest. SJ improved similarly across all 4 conditions. PPU could not be assessed. Since the test protocol of SJ and PPU involved upper and lower body activation and caused PAPE in SJ, future work is required to determine if a nonlocalized PAPE effect exists.


Author(s):  
Kang Xiangli ◽  
Ruiqing Ma

In this paper, a power source redundancy-optimization approach for aircraft electrical brake electromechanical actuation system was proposed. The PWM plus phase-shift (PPS) control method was introduced in Dual active half bridge, which limited the amplitude of transform's leakage inductance current, thus expanding the fluctuation range of input voltage. Then, the voltage gain formula was deduced. By analyzing the leakage current under different phase shift in one period, the average power and root-mean-square (RMS) value of leakage current can be compared. Then, the optimum modulation range of phase shift can be obtained. By analyzing the soft-switching operation in this range, all switches can realize zero-voltage-switching (ZVS). To ensure the output voltage stability and voltage balance across the leakage inductance, a closed loop control method is designed. Finally, a prototype of 28V/270V-1kW was built to verify the theoretical analysis and calculation.


Sign in / Sign up

Export Citation Format

Share Document