scholarly journals Non-Conventional Actuation Mechanisms used in Mechatronic systems

Author(s):  
Rajiv Chaudhary ◽  
◽  
Alok Kumar Singh

Tracking the path of development in different Engineering disciplines, it can be easily observed that, right from the primitive stage, several tools, devices, and techniques may be identified, which happened by virtue of the evolution of human intelligence, getting transformed into various engineering applications. Although, later different engineering disciplines evolved, where most of the exhaustive development could be undertaken in that discipline. Likewise, in the field of mechanical engineering to various types of mechanical systems, according to the requirement in that field, were developed, in order to provide support of mechanization. Prime movers used to be an important part of these mechanical systems, which provided energy input as well as actuation required for providing the machines the desired kinematics. Most of the mechanical systems developed has been operated by conventional engine system using one or other fuel. Apart from the actuation by mechanical means, there are other means also through which mechanical actuation with better control, flexibility, and manipulation may be utilized in mechanical systems. A different category of systems, called Mechatronic systems has been developed in the recent past, which involves the vivid scope of use of techniques, devices, and components generally used in various other engineering fields of electrical, electronics, hydraulics, and pneumatics, etc. Subsequently, there have been several inventions, design & development which have added new levels in every field. Mechanical systems have been generally composed of various mechanical elements, which are designed to follow certain kinematics. The performance of the Actuation system plays an important role in the overall performance of the mechanical systems. There are several alternative actuation systems, which are not mechanical. These actuation systems may be categorized into electrical, electronics, hydraulic and pneumatic types. The features of these actuation systems, are so peculiar, that typical kinematic movement may be manipulated that too with more precision. Better control of mechanical systems may be realized, which is otherwise difficult with mechanical systems. In this paper, an effort has been made to review the possibilities, prospects as well as scope with various actuation systems.

Author(s):  
Jahangir Rastegar ◽  
Dake Feng

This paper presents a study of the dynamic response of actuation devices used in mechanical systems with nonlinear dynamics such as robot manipulators. The study shows that the actuation forces/torques provided by actuation devices can be divided into two basic groups. The first group corresponds to the components of each actuator force/torque that is “actuator motion independent”. The dynamic response of this group is relatively high and limited only by the dynamic response limitations — for the case of electrically driven actuation systems — of the driving power amplifiers, electronics, computational and signal processing devices and components. The second group corresponds to those components of the actuator forces/torques that is “actuator motion dependent”. The dynamic response of this group is relatively low and dependent on the actuator effective inertial load and actuation speed. In all mechanical systems that are properly designed, the dynamic response of the first group is significantly higher than those of the second group. By separating the required actuating forces/torques into the above two groups, the dynamic response of such nonlinear dynamics systems may be determined for a given synthesized trajectory. The information can also be used to significantly increase the performance of control systems of such mechanical systems. When a feed-forward control signal is used, the performance of the system is shown to be significantly improved by generating each one of the group of components separately considering the dynamic response of the actuation system to each one of the groups of components. An example and practical methods of implementing the proposed feed-forward control for nonlinear dynamics systems are provided.


2013 ◽  
Vol 372 ◽  
pp. 608-611
Author(s):  
Xiao Yuan Chen

As switched reluctance machines (SRM) generally offer a simple and robust design, they are very suitable for electromechanical actuation systems which need to be actuated by fault tolerant drives. This paper investigates dual-channel, dual-redundancy, lacking phase schemes of SRM guaranteeing fault tolerance and the corresponding control systems in detail are compared to point out the advantages and disadvantages of them., a new lacking phase scheme for 12/8 SRM is proposed and the finite element model based on field-circuit coupling is established, results indicate that this scheme have superior fault tolerant performance and suit tasks in electro-mechanical actuation system of aerospace environments.


Author(s):  
Fengyu Liu ◽  
Li Chen ◽  
Jian Yao ◽  
Chunhao Lee ◽  
Chi-kuan Kao ◽  
...  

Clutch-to-clutch shift technology is a key enabler for fast and smooth gear shift process for multi gear transmissions. However, conventional hydraulic actuation systems for clutches have drawbacks of low efficiency, oil leakage and inadequate robustness. Electromechanical devices offer potential alternative actuators. In this paper, a novel motor driven wedge-based clutch actuator, featuring self-reinforcement, is proposed. The design concept and physical structure are thoroughly described. Dynamic models for the actuation system and vehicle powertrain are validated by experiments. Upshift and downshift processes at different engine throttle openings, clutch clearances and friction coefficients are discussed. The results show that, the self-reinforcement ratio is tested as 9.6; at the same time, the shift quality is comparable to that of the conventional hydraulic actuated clutch in automatic transmissions in terms of the shift duration (about 1 s) and vehicle jerk (<10 m/s3). Taking advantage of fast response of the actuation DC motor, the wedge-based actuator is robust dealing with uncertain clutch clearance and friction coefficient. Therefore, the wedge-based clutch actuator has potential to provide acceptable performance for clutch-to-clutch shift.


Aerospace ◽  
2004 ◽  
Author(s):  
Tian-Bing Xu ◽  
Ji Su

An electroactive polymer-ceramic hybrid actuation system (HYBAS) was recently developed. The HYBAS demonstrates significantly-enhanced electromechanical performance by utilizing advantages of cooperative contributions of the electromechanical responses of an electrostrictive copolymer and an electroactive single crystal. The hybrid actuation system provides not only a new type of device but also a concept to utilize different electroactive materials in a cooperative and efficient method for optimized electromechanical performance. In order to develop an effective procedure to optimize the performance of a hybrid actuation system (HYBAS), a theoretical model has been developed, based on the elastic and electromechanical properties of the materials utilized in the system and on the configuration of the device. The model also evaluates performance optimization as a function of geometric parameters, including the length of the HYBAS and the thickness ratios of the constituent components. The comparison between the model and the experimental results shows a good agreement and validates the model as an effective method for the further development of high performance actuating devices or systems for various applications.


2008 ◽  
Vol 1129 ◽  
Author(s):  
Alexandra Vanderhoff ◽  
Kwang Kim

AbstractThe study determines the feasibility of a new actuation system that couples a fluidic artificial muscle designed by Festo [1] with a metal hydride hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. An initial model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties [2] for use in robotic systems. When compared to other previously developed metal hydride actuation systems the potential for increasing the reaction kinetics and improving the overall power output of the system is revealed. A comparison of the system to common actuation devices, including a biological muscle, shows similar stress and strain relations, but a lower power and frequency range due to the slow actuation time. Improving the reaction kinetics of the system will be the first approach to enhancing the system, along with optimization of the mass and type of metal hydride used in the reactor to produce a full actuation stoke of the fluidic muscle while minimizing system weight.


Author(s):  
Shaju John ◽  
Jin-Hyeong Yoo ◽  
Norman M. Wereley

There is a demand for compact hybrid actuation systems which combines actuation and valving systems in a compact package. Such self-contained actuation systems have potential applications in the field of rotorcraft (as active pitch links) and automotive engineering (as active vibration control devices). Hybrid hydraulic actuation systems, based on frequency rectification of the high frequency motion of an active material, can be used to exploit the high bandwidth of smart material to design devices with high force and stroke. Magnetorheological (MR) fluids are active fluids whose viscosity can be changed through the application of a magnetic field. By using MR fluids as the hydraulic fluid in such hybrid devices, a valving system with no moving parts can be implemented. Such a system will be attractive in rotorcraft applications with large centrifugal force loading. Thus, MR fluids can be used to control the motion of an output cylinder. The MR fluid based valves can be configured in the form of a Wheatstone bridge to produce bi-directional motion in an output cylinder by alternately applying a magnetic field in the two arms of the bridge. In this study, the actuation is performed using a compact Terfenol-D stack driven actuator. The frequency rectification of the stack motion is done using reed valves. This actuator and valve configuration form a compact hydraulic system with fluidic valves. The advantages of such systems are that part count is low, absence of moving parts and the possibility of continuous controllability of the output cylinder. By applying varying magnetic fields in the arms of the bridge (by applying different currents to the coils), the differential pressure acting on the output cylinder can be controlled. The description of the experimental setup, the tests performed and the experimental results are presented in this paper.


2021 ◽  
Vol 346 ◽  
pp. 03051
Author(s):  
N. K. Kuznetsov ◽  
I. A. Iov ◽  
A. A. Iov ◽  
E. S. Dolgih

In this paper, using the example of a two-mass calculation scheme, which can be used to describe the dynamic properties of many mechatronic systems with elastic elements, we present the results of research on finding control actions that provide compensation of dynamic errors based on solving the inverse dynamic problems according to a given law of change of the force in an elastic element. It is shown that the found control actions in the form of time dependences make it possible not to impose any restrictions on the methods of their technical implementation and thereby provide a comprehensive solution the problem of compensating for dynamic errors caused by elastic deformations of mechanical elements.


Robotica ◽  
2010 ◽  
Vol 28 (7) ◽  
pp. 1045-1056 ◽  
Author(s):  
J. Berring ◽  
K. Kianfar ◽  
C. Lira ◽  
C. Menon ◽  
F. Scarpa

SUMMARYA hydraulic flexible joint inspired by the actuation system of spiders is investigated in this paper. Its design and characteristics are discussed and a mathematical model is developed to describe its static behaviour. Results of experimental tests are presented to validate its performance. A comparison to other hydraulic actuation systems is performed. The use of the proposed hydraulic flexible joint in adaptive robotic structures is addressed and discussed.


2005 ◽  
Vol 128 (4) ◽  
pp. 778-787 ◽  
Author(s):  
Saeid Habibi ◽  
Richard Burton ◽  
Eric Sampson

In this paper reports on an important finding, that is, hydrostatic actuation systems are able to manipulate heavy loads with submicron precision and a large stroke. In this relation, the design of a high-precision hydrostatic actuation system referred to as the ElectroHydraulic Actuator (EHA) is presented. A laboratory prototype of this system has achieved an unprecedented level of performance by being able to move a large load of 20Kg with a precision of 100nm and a stroke of 12cm. This level of performance places the hydrostatic actuation concept in competition with piezoelectric platforms in terms of positional accuracy. Experimental results from this prototype are reported and analyzed.


Sign in / Sign up

Export Citation Format

Share Document