scholarly journals Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8152
Author(s):  
Dongyeon Yu ◽  
Honggyu Lee ◽  
Taehoon Kim ◽  
Sung-Ho Hwang

It is essential for autonomous vehicles at level 3 or higher to have the ability to predict the trajectories of surrounding vehicles to safely and effectively plan and drive along trajectories in complex traffic situations. However, predicting the future behavior of vehicles is a challenging issue because traffic vehicles each have different drivers with different driving tendencies and intentions and they interact with each other. This paper presents a Long Short-Term Memory (LSTM) encoder–decoder model that utilizes an attention mechanism that focuses on certain information to predict vehicles’ trajectories. The proposed model was trained using the Highway Drone (HighD) dataset, which is a high-precision, large-scale traffic dataset. We also compared this model to previous studies. Our model effectively predicted future trajectories by using an attention mechanism to manage the importance of the driving flow of the target and adjacent vehicles and the target vehicle’s dynamics in each driving situation. Furthermore, this study presents a method of linearizing the road geometry such that the trajectory prediction model can be used in a variety of road environments. We verified that the road geometry linearization mechanism can improve the trajectory prediction model’s performance on various road environments in a virtual test-driving simulator constructed based on actual road data.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4703
Author(s):  
Yookhyun Yoon ◽  
Taeyeon Kim ◽  
Ho Lee ◽  
Jahnghyon Park

For driving safely and comfortably, the long-term trajectory prediction of surrounding vehicles is essential for autonomous vehicles. For handling the uncertain nature of trajectory prediction, deep-learning-based approaches have been proposed previously. An on-road vehicle must obey road geometry, i.e., it should run within the constraint of the road shape. Herein, we present a novel road-aware trajectory prediction method which leverages the use of high-definition maps with a deep learning network. We developed a data-efficient learning framework for the trajectory prediction network in the curvilinear coordinate system of the road and a lane assignment for the surrounding vehicles. Then, we proposed a novel output-constrained sequence-to-sequence trajectory prediction network to incorporate the structural constraints of the road. Our method uses these structural constraints as prior knowledge for the prediction network. It is not only used as an input to the trajectory prediction network, but is also included in the constrained loss function of the maneuver recognition network. Accordingly, the proposed method can predict a feasible and realistic intention of the driver and trajectory. Our method has been evaluated using a real traffic dataset, and the results thus obtained show that it is data-efficient and can predict reasonable trajectories at merging sections.


Author(s):  
Anne Bolling ◽  
Jonas Jansson ◽  
Mattias Hjort ◽  
Mats Lidström ◽  
Staffan Nordmark ◽  
...  

With today’s advanced measurement equipment for monitoring road condition, it is possible to measure road geometry at high precision within a large span of wavelengths. Detailed information about the roads’ longitudinal and lateral profiles, including macro texture, would in theory be sufficient for a realistic reproduction of road induced vibration and noise in a driving simulator. Especially, it would be possible to create a direct connection between the visual information of the road condition and the ride experience, which would increase the level of realism in the simulation. VTI has, during three years, performed an internal project called SHAKE with the aim to develop and implement models in VTI driving simulator III that use measured road data for generating realistic vibrations and audible road noise connected to the visual impression presented on the projection screen. This has indeed resulted in a more realistic driving experience, and a validation study with test persons driving both in the simulator and in the field has been undertaken. The OpenDRIVE standard is used as a framework for describing the road properties (e.g., visual, vibrations, and noise). For this purpose, some augmentations to the OpenDRIVE standard had to be made. This paper describes the technical implementations in the driving simulator, along with results from test drives on the implemented road sections.


Author(s):  
Nathan Goulet ◽  
Beshah Ayalew

Abstract There are significant economic, environmental, energy, and other societal costs incurred by the road transportation sector. With the advent and penetration of connected and autonomous vehicles there are vast opportunities to optimize the control of individual vehicles for reducing energy consumption and increasing traffic flow. Model predictive control is a useful tool to achieve such goals, while accommodating ego-centric objectives typical of heterogeneous traffic and explicitly enforcing collision and other constraints. In this paper, we describe a multi-agent distributed maneuver planning and lane selection model predictive controller that includes an information sharing and coordination scheme. The energy saving potential of the proposed coordination scheme is then evaluated via large scale microscopic traffic simulations considering different penetration levels of connected and automated vehicles.


Author(s):  
Yuexin Ma ◽  
Xinge Zhu ◽  
Sibo Zhang ◽  
Ruigang Yang ◽  
Wenping Wang ◽  
...  

To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances’ movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.


2015 ◽  
Vol 27 (6) ◽  
pp. 660-670 ◽  
Author(s):  
Udara Eshan Manawadu ◽  
◽  
Masaaki Ishikawa ◽  
Mitsuhiro Kamezaki ◽  
Shigeki Sugano ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00270006/08.jpg"" width=""300"" /> Driving simulator</div>Intelligent passenger vehicles with autonomous capabilities will be commonplace on our roads in the near future. These vehicles will reshape the existing relationship between the driver and vehicle. Therefore, to create a new type of rewarding relationship, it is important to analyze when drivers prefer autonomous vehicles to manually-driven (conventional) vehicles. This paper documents a driving simulator-based study conducted to identify the preferences and individual driving experiences of novice and experienced drivers of autonomous and conventional vehicles under different traffic and road conditions. We first developed a simplified driving simulator that could connect to different driver-vehicle interfaces (DVI). We then created virtual environments consisting of scenarios and events that drivers encounter in real-world driving, and we implemented fully autonomous driving. We then conducted experiments to clarify how the autonomous driving experience differed for the two groups. The results showed that experienced drivers opt for conventional driving overall, mainly due to the flexibility and driving pleasure it offers, while novices tend to prefer autonomous driving due to its inherent ease and safety. A further analysis indicated that drivers preferred to use both autonomous and conventional driving methods interchangeably, depending on the road and traffic conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253868
Author(s):  
Luca Rossi ◽  
Andrea Ajmar ◽  
Marina Paolanti ◽  
Roberto Pierdicca

Vehicles’ trajectory prediction is a topic with growing interest in recent years, as there are applications in several domains ranging from autonomous driving to traffic congestion prediction and urban planning. Predicting trajectories starting from Floating Car Data (FCD) is a complex task that comes with different challenges, namely Vehicle to Infrastructure (V2I) interaction, Vehicle to Vehicle (V2V) interaction, multimodality, and generalizability. These challenges, especially, have not been completely explored by state-of-the-art works. In particular, multimodality and generalizability have been neglected the most, and this work attempts to fill this gap by proposing and defining new datasets, metrics, and methods to help understand and predict vehicle trajectories. We propose and compare Deep Learning models based on Long Short-Term Memory and Generative Adversarial Network architectures; in particular, our GAN-3 model can be used to generate multiple predictions in multimodal scenarios. These approaches are evaluated with our newly proposed error metrics N-ADE and N-FDE, which normalize some biases in the standard Average Displacement Error (ADE) and Final Displacement Error (FDE) metrics. Experiments have been conducted using newly collected datasets in four large Italian cities (Rome, Milan, Naples, and Turin), considering different trajectory lengths to analyze error growth over a larger number of time-steps. The results prove that, although LSTM-based models are superior in unimodal scenarios, generative models perform best in those where the effects of multimodality are higher. Space-time and geographical analysis are performed, to prove the suitability of the proposed methodology for real cases and management services.


2014 ◽  
Vol 599-601 ◽  
pp. 760-766
Author(s):  
Qing Bo Shao ◽  
Hsin Guan ◽  
Xin Jia

Predicting vehicle trajectory accurately is a crucial task for an autonomous vehicle. It is also necessary for many Advanced Driver Assistance System to predict trajectory of the ego-vehicle’s. In recent years, some vehicles trajectory prediction algorithm is mainly based on a simple Motion Model. This paper puts forward a method which combines road recognition and the hypothesis of steady preview and dynamic correction for trajectory prediction. In the road recognition algorithm, both methods of Kalman Filter (KF) and Recursive Least-Square (RLS) work well to estimate the road slope and road friction coefficient.


Vehicles ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 764-777
Author(s):  
Dario Niermann ◽  
Alexander Trende ◽  
Klas Ihme ◽  
Uwe Drewitz ◽  
Cornelia Hollander ◽  
...  

The quickly rising development of autonomous vehicle technology and increase of (semi-) autonomous vehicles on the road leads to an increased demand for more sophisticated human–machine-cooperation approaches to improve trust and acceptance of these new systems. In this work, we investigate the feeling of discomfort of human passengers while driving autonomously and the automatic detection of this discomfort with several model approaches, using the combination of different data sources. Based on a driving simulator study, we analyzed the discomfort reports of 50 participants for autonomous inner city driving. We found that perceived discomfort depends on the driving scenario (with discomfort generally peaking in complex situations) and on the passenger (resulting in interindividual differences in reported discomfort extend and duration). Further, we describe three different model approaches on how to predict the passenger discomfort using data from the vehicle’s sensors as well as physiological and behavioral data from the passenger. The model’s precision varies greatly across the approaches, the best approach having a precision of up to 80%. All of our presented model approaches use combinations of linear models and are thus fast, transparent, and safe. Lastly, we analyzed these models using the SHAP method, which enables explaining the models’ discomfort predictions. These explanations are used to infer the importance of our collected features and to create a scenario-based discomfort analysis. Our work demonstrates a novel approach on passenger state modelling with simple, safe, and transparent models and with explainable model predictions, which can be used to adapt the vehicles’ actions to the needs of the passenger.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Shi ◽  
Wei Dai ◽  
Wen Long ◽  
Bo Li

The liquidity risk factor of security market plays an important role in the formulation of trading strategies. A more liquid stock market means that the securities can be bought or sold more easily. As a sound indicator of market liquidity, the transaction duration is the focus of this study. We concentrate on estimating the probability density function p Δ t i + 1 | G i , where Δ t i + 1 represents the duration of the (i + 1)-th transaction and G i represents the historical information at the time when the (i + 1)-th transaction occurs. In this paper, we propose a new ultrahigh-frequency (UHF) duration modelling framework by utilizing long short-term memory (LSTM) networks to extend the conditional mean equation of classic autoregressive conditional duration (ACD) model while retaining the probabilistic inference ability. And then, the attention mechanism is leveraged to unveil the internal mechanism of the constructed model. In order to minimize the impact of manual parameter tuning, we adopt fixed hyperparameters during the training process. The experiments applied to a large-scale dataset prove the superiority of the proposed hybrid models. In the input sequence, the temporal positions which are more important for predicting the next duration can be efficiently highlighted via the added attention mechanism layer.


Sign in / Sign up

Export Citation Format

Share Document