scholarly journals Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8485
Author(s):  
Rabindra Gandhi Thangarajoo ◽  
Mamun Bin Ibne Reaz ◽  
Geetika Srivastava ◽  
Fahmida Haque ◽  
Sawal Hamid Md Ali ◽  
...  

Epileptic seizures are temporary episodes of convulsions, where approximately 70 percent of the diagnosed population can successfully manage their condition with proper medication and lead a normal life. Over 50 million people worldwide are affected by some form of epileptic seizures, and their accurate detection can help millions in the proper management of this condition. Increasing research in machine learning has made a great impact on biomedical signal processing and especially in electroencephalogram (EEG) data analysis. The availability of various feature extraction techniques and classification methods makes it difficult to choose the most suitable combination for resource-efficient and correct detection. This paper intends to review the relevant studies of wavelet and empirical mode decomposition-based feature extraction techniques used for seizure detection in epileptic EEG data. The articles were chosen for review based on their Journal Citation Report, feature selection methods, and classifiers used. The high-dimensional EEG data falls under the category of ‘3N’ biosignals—nonstationary, nonlinear, and noisy; hence, two popular classifiers, namely random forest and support vector machine, were taken for review, as they are capable of handling high-dimensional data and have a low risk of over-fitting. The main metrics used are sensitivity, specificity, and accuracy; hence, some papers reviewed were excluded due to insufficient metrics. To evaluate the overall performances of the reviewed papers, a simple mean value of all metrics was used. This review indicates that the system that used a Stockwell transform wavelet variant as a feature extractor and SVM classifiers led to a potentially better result.

2021 ◽  
Vol 24 (3) ◽  
pp. 50-54
Author(s):  
Mohammad W.Habib ◽  
◽  
Zainab N. Sultani ◽  

Twitter is considered a significant source of exchanging information and opinion in today's business. Analysis of this data is critical and complex due to the size of the dataset. Sentiment Analysis is adopted to understand and analyze the sentiment of such data. In this paper, a Machine learning approach is employed for analyzing the data into positive or negative sentiment (opinion). Different arrangements of preprocessing techniques are applied to clean the tweets, and various feature extraction methods are used to extract and reduce the dimension of the tweets' feature vector. Sentiment140 dataset is used, and it consists of sentiment labels and tweets, so supervised machine learning models are used, specifically Logistic Regression, Naive Bayes, and Support Vector Machine. According to the experimental results, Logistic Regression was the best amongst other models with all feature extraction techniques.


2019 ◽  
Vol 64 (5) ◽  
pp. 507-517 ◽  
Author(s):  
Ashok Sharmila ◽  
Purusothaman Geethanjali

Abstract Over several years, research had been conducted for the detection of epileptic seizures to support an automatic diagnosis system to comfort the clinicians’ encumbrance. In this regard, a number of research papers have been published for the identification of epileptic seizures. A thorough review of all these papers is required. So, an attempt has been made to review on the pattern detection methods for epilepsy seizure detection from EEG signals. More than 150 research papers have been discussed to determine the techniques for detecting epileptic seizures. Further, the literature review confirms that the pattern recognition techniques required to detect epileptic seizures varies across the electroencephalogram (EEG) datasets of different conditions. This is mostly owing to the fact that EEG detected under different conditions have different characteristics. This consecutively necessitates the identification of the pattern recognition technique to efficiently differentiate EEG epileptic data from the EEG data of various conditions.


Author(s):  
Roohi Sille ◽  
Garima Sharma ◽  
N. Pradhan

Epileptic seizures detection is largely based on analysis of Electroencephalogram signals. The ambulatory EEG recordings generate very lengthy data which require a skilled and careful analysis. This tedious procedure necessitates the use of automated systems for epileptic seizure detection. This paper proposes one such automated epileptic seizure detection technique based on Probabilistic Neural Network (PNN) by using a time frequency domain characteristics of EEG signal called Approximate Entropy(ApEn). Our method consists of EEG data collection, feature extraction and classification. EEG data from normal and epileptic subjects was collected, digitized and then fed into the PNN. For feature extraction, the wavelet coefficients are derived using Discrete Wavelet Transformation. For the feature selection stage a new methodology is proposed, which is, comparing the ApEn values of wavelet coefficients of different EEG data. The experimental results portray that this proposed approach efficiently detects the presence of epileptic seizures in EEG signals and showed a reasonable accuracy.


Author(s):  
Sarmad Mahar ◽  
Sahar Zafar ◽  
Kamran Nishat

Headnotes are the precise explanation and summary of legal points in an issued judgment. Law journals hire experienced lawyers to write these headnotes. These headnotes help the reader quickly determine the issue discussed in the case. Headnotes comprise two parts. The first part comprises the topic discussed in the judgment, and the second part contains a summary of that judgment. In this thesis, we design, develop and evaluate headnote prediction using machine learning, without involving human involvement. We divided this task into a two steps process. In the first step, we predict law points used in the judgment by using text classification algorithms. The second step generates a summary of the judgment using text summarization techniques. To achieve this task, we created a Databank by extracting data from different law sources in Pakistan. We labelled training data generated based on Pakistan law websites. We tested different feature extraction methods on judiciary data to improve our system. Using these feature extraction methods, we developed a dictionary of terminology for ease of reference and utility. Our approach achieves 65% accuracy by using Linear Support Vector Classification with tri-gram and without stemmer. Using active learning our system can continuously improve the accuracy with the increased labelled examples provided by the users of the system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Author(s):  
Mokhtar Al-Suhaiqi ◽  
Muneer A. S. Hazaa ◽  
Mohammed Albared

Due to rapid growth of research articles in various languages, cross-lingual plagiarism detection problem has received increasing interest in recent years. Cross-lingual plagiarism detection is more challenging task than monolingual plagiarism detection. This paper addresses the problem of cross-lingual plagiarism detection (CLPD) by proposing a method that combines keyphrases extraction, monolingual detection methods and machine learning approach. The research methodology used in this study has facilitated to accomplish the objectives in terms of designing, developing, and implementing an efficient Arabic – English cross lingual plagiarism detection. This paper empirically evaluates five different monolingual plagiarism detection methods namely i)N-Grams Similarity, ii)Longest Common Subsequence, iii)Dice Coefficient, iv)Fingerprint based Jaccard Similarity  and v) Fingerprint based Containment Similarity. In addition, three machine learning approaches namely i) naïve Bayes, ii) Support Vector Machine, and iii) linear logistic regression classifiers are used for Arabic-English Cross-language plagiarism detection. Several experiments are conducted to evaluate the performance of the key phrases extraction methods. In addition, Several experiments to investigate the performance of machine learning techniques to find the best method for Arabic-English Cross-language plagiarism detection. According to the experiments of Arabic-English Cross-language plagiarism detection, the highest result was obtained using SVM   classifier with 92% f-measure. In addition, the highest results were obtained by all classifiers are achieved, when most of the monolingual plagiarism detection methods are used. 


Author(s):  
Syed Jamal Safdar Gardezi ◽  
Mohamed Meselhy Eltoukhy ◽  
Ibrahima Faye

Breast cancer is one of the leading causes of death in women worldwide. Early detection is the key to reduce the mortality rates. Mammography screening has proven to be one of the effective tools for diagnosis of breast cancer. Computer aided diagnosis (CAD) system is a fast, reliable, and cost-effective tool in assisting the radiologists/physicians for diagnosis of breast cancer. CAD systems play an increasingly important role in the clinics by providing a second opinion. Clinical trials have shown that CAD systems have improved the accuracy of breast cancer detection. A typical CAD system involves three major steps i.e. segmentation of suspected lesions, feature extraction and classification of these regions into normal or abnormal class and further into benign or malignant stages. The diagnostics ability of any CAD system is dependent on accurate segmentation, feature extraction techniques and most importantly classification tools that have ability to discriminate the normal tissues from the abnormal tissues. In this chapter we discuss the application of machine learning algorithms e.g. ANN, binary tree, SVM, etc. together with segmentation and feature extraction techniques in a CAD system development. Various methods used in the detection and diagnosis of breast lesions in mammography are reviewed. A brief introduction of machine learning tools, used in diagnosis and their classification performance on various segmentation and feature extraction techniques is presented.


2018 ◽  
Vol 05 (02) ◽  
pp. 092-098
Author(s):  
Pushpa Balakrishnan ◽  
S. Hemalatha ◽  
Dinesh Nayak Shroff Keshav

Abstract Background Epilepsy is a common neurological disorder characterized by seizures and can lead to life-threatening consequences. The electroencephalogram (EEG) is a diagnostic test used to analyze brain activity in various neurological conditions including epilepsy and interpreted by the clinician for appropriate diagnosis. However, the process of EEG analysis for diagnosis can be automated using machine learning algorithms (MLAs) to aid the clinician. The objective of the study was to test different algorithms that could be used for the detection of seizures. Materials and Methods Video EEG (vEEG) was collected from subjects diagnosed to have episodes of seizures. The epilepsy dataset thus obtained was subjected to empirical mode decomposition (EMD) and the signal was decomposed into intrinsic mode functions (IMFs). The first five levels of decomposition were considered for analysis as per the established protocol. Statistical features such as interquartile range (IQR), entropy, and mean absolute deviation (MAD) were extracted from these IMFs. Results In this study, different MLAs such as nearest neighbor (NN), naïve Bayes (NB), and support vector machines (SVMs) were used to distinguish between normal (interictal) and abnormal (ictal) states. The demonstrated accuracy rates were 97.32% for NN, 99.02% for NB, and 93.75% for SVM. Conclusion Based on this accuracy and sensitivity, it may be posited that the NB classifier provides significantly better results for the detection of abnormal signals indicating that MLA can detect the seizure with better accuracy.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950016 ◽  
Author(s):  
Duanpo Wu ◽  
Zimeng Wang ◽  
Hong Huang ◽  
Guangsheng Wang ◽  
Junbiao Liu ◽  
...  

Epilepsy is caused by sudden abnormal discharges of neurons in the brain. This paper constructs an automatic seizure detection system, which combines the predicting result of multi-domain feature with the predicting result of spike rate feature to detect the occurrence of epileptic seizures. After segmenting EEG data into 5[Formula: see text]s with 80% overlap epochs, the paper extracts time domain features, frequency domain features and hurst exponents (HE) from each epoch and these features are reduced by linear discriminant analysis (LDA) to be input parameters of the random forest (RF) classifier, which provides classification of the EEG epochs concerning the existence of seizures. In parallel, the paper extracts spikes from EEG data with morphological filter and calculates the spike rate to determine whether there is seizure. Then the results obtained by these two methods are merged as the final detection result. The paper shows that the accuracy (AC), sensitivity (SE), specificity (SP) and the false positive ratio based on event (FPRE) obtained by hybrid method are 98.94%, 76.60%, 98.99% and 2.43 times/h, respectively. Finally, the paper applies the seizure detection method to do seizure warning and recording to help the family member to take care of the patients and the doctor to adjust the antiepileptic drugs (AEDs).


Sign in / Sign up

Export Citation Format

Share Document