scholarly journals An Open-Source, Durable, and Low-Cost Alternative to Commercially Available Soil Temperature Data Loggers

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 148
Author(s):  
Salvatore R. Curasi ◽  
Ian Klupar ◽  
Michael M. Loranty ◽  
Adrian V. Rocha

Soil temperatures play an important role in determining the distribution and function of organisms. However, soil temperature is decoupled from air temperature and varies widely in space. Characterizing and predicting soil temperature requires large and expensive networks of data loggers. We developed an open-source soil temperature data logger and created online resources to ensure our design was accessible. We tested data loggers constructed by students, with little prior electronics experience, in the lab, and in the field in Alaska. The do-it-yourself (DIY) data logger was comparably accurate to a commercial system with a mean absolute error of 2% from −20–0 °C and 1% from 0–20 °C. They captured accurate soil temperature data and performed reliably in the field with less than 10% failing in the first year of deployment. The DIY loggers were ~1.7–7 times less expensive than commercial systems. This work has the potential to increase the spatial resolution of soil temperature monitoring and serve as a powerful educational tool. The DIY soil temperature data logger will reduce data collection costs and improve our understanding of species distributions and ecological processes. It also provides an educational resource to enhance STEM, accessibility, inclusivity, and engagement.

2019 ◽  
Vol 23 (4) ◽  
pp. 2065-2076 ◽  
Author(s):  
Andrew D. Wickert ◽  
Chad T. Sandell ◽  
Bobby Schulz ◽  
Gene-Hua Crystal Ng

Abstract. Automated electronic data loggers revolutionized environmental monitoring by enabling reliable high-frequency measurements. However, the potential to monitor the complex environmental interactions involved in global change has not been fully realized due to the high cost and lack of modularity of commercially available data loggers. Responding to this need, we developed the ALog (Arduino logger) series of three open-source data loggers, based on the popular and easy-to-program Arduino microcontroller platform. ALog data loggers are low cost, lightweight, and low power; they function between −30 and +60 ∘C, can be powered by readily available alkaline batteries, and can store up to 32 GB of data locally. They are compatible with standard environmental sensors, and the ALog firmware library may be expanded to add additional sensor support. The ALog has measured parameters linked to weather, streamflow, and glacier melt during deployments of days to years at field sites in the USA, Canada, Argentina, and Ecuador. The result of this work is a robust and field-tested open-source data logger that is the direct descendant of dozens of individuals' contributions to the growing open-source electronics movement.


Author(s):  
M H Abdullah ◽  
S A Che Ghani ◽  
Z Zaulkafilai ◽  
S N Tajuddin

2020 ◽  
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in-situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the Mini Buoy, a low-cost bottom-mounted float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


2021 ◽  
Vol 25 (3) ◽  
pp. 1229-1244
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the “Mini Buoy”, a low-cost underwater float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current-velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence, can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


2020 ◽  
Vol 6 (5) ◽  
pp. 0585-0593
Author(s):  
Bruna Couto Molinar Henrique ◽  
Leonardo Couto Molinar Henrique ◽  
Humberto Molinar Henrique

This work deals with implementation of an experimental flowrate control unit using free and low-cost hardware and software. The open-source software Processing was used to develop the source codes and user graphical interface and the open-source electronic prototyping platform Arduino was used to acquire data from an experimental unit. Work presents descriptions of the experimental setup, the real-time PID controllers used and theoretical/conceptual issues of Arduino. PID controllers based on internal model control, minimization of the integral of time-weighted absolute error, Ziegler-Nichols, and others were tuned for setpoint and load changes and real-time runs were carried out in order to make real-time use of  control theory learned in academy. Results showed the developed platform proved to be suitable for use in experimental setups allowing users compare their ideas and expectations with the experimental evidence in a real and low-cost fashion. In addition, the instrumentation is simple to configure with acceptable level noise and particularly useful for control/automation learning with educational purposes.


2021 ◽  
Author(s):  
Michael D. Kelzenberg ◽  
Samuel P. Loke ◽  
Harry A. Atwater
Keyword(s):  
Low Cost ◽  

2017 ◽  
Vol 54 (1) ◽  
pp. 6-14
Author(s):  
Mitchell D. Richmond ◽  
Robert C. Pearce ◽  
Ben M. Goff ◽  
William A. Bailey

Significant variability in cured-leaf tobacco-specific nitrosamine (TSNA) content is commonly observed when sampling within dark air-curing barns. This variability may be due to inconsistency in the curing environment within different areas of the barn. A study was initiated in 2012, through support from a CORESTA Study Grant, to evaluate if cured-leaf TSNA content is related to microenvironmental conditions in the barn. Low-converter (TRsc) and high-converter (TRHC) selections of TR Madole dark tobacco were air cured in barns near Princeton and Lexington, KY. Temperature and relative humidity were measured with data loggers placed at 27 different locations within each barn for the duration of curing. There were no significant effects of individual data logger placement in either variety selection on hours above 24°C temperature, hours above 80% relative humidity, or TSNA; therefore, we investigated these data within the 3-dimensional aspects of tier, room, and bent within each barn. There were various effects of tier, room, and bent on temperature, relative humidity, and TSNA. Temperature data followed an understandable pattern across tiers in the barn within each year and location; however, relative humidity and TSNA were more difficult to characterize adequately. There was a significant relationship between hours above 24°C and TSNA, but not hours above 80% relative humidity. This study has shown that the effect of within-barn position on TSNA cannot be easily predicted.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Khaled M Dadesh ◽  
Saif M Ben Rhouma

When looking at installing a renewable energy generator, you need to be confident of the resource (solar, wind) at your particular location as this affects the energy generated at the selected site. With solar photovoltaic (PV) systems, this can be done by looking at historic data, generally from satellite readings, for the particular latitude. This will yield pretty accurate resource data. However, the wind resource is incredibly variable and depends upon the exact topology of the area. Houses, trees, and valleys all can affect the local wind resource. For this reason, wind speed data is collected at a potential wind turbine installation site. This gives real data which can be used to assess the wind speed. When installing a number of very expensive large wind turbines, one must be very confident about the wind speed data. The data must be robust and reliable and the developer will be willing to spend a lot of money on accurate industrial equipment to have lots of confidence in the data. This project intends to overcome this barrier by providing a low-cost, reusable, open-source wind speed recording unit, which can be left at high altitude in a remote location to record data and help improve the site’s wind speed assessment. We have proposed and developed a low-cost hardware module based on Arduino open source platform, which measures the meteorological data, including air, temperature, relative humidity, wind speed and solar radiation, with two options: The first is the wireless option at which it sends the measured information to Excel spreadsheet running on a PC through wireless link. The second is the data logger option at which it records the measured data to SD card as Excel file with date and time every 10 seconds..


2005 ◽  
Vol 15 (3) ◽  
pp. 572-576
Author(s):  
Matthew L. Richardson ◽  
Dewey M. Caron

Various instruments and contract services can be used to calculate degree-days. This study compared instruments and services to the Wescor Biophenometer, an instrument used by cooperators of the Southeast Pennsylvania IPM Research Group (SE PA IPM RG) throughout Delaware and southeastern Pennsylvania for 10 years. Instruments evaluated in the study were the Wescor Biophenometer Datalogger, Avatel HarvestGuard, Avatel Datascribe Junior, Davis Weather Monitor II, Accu-Trax, and the HOBO H8 Pro Temperature Data Logger. The services were SkyBit and national weather data. Different combinations of instruments and services were used at three locations in Pennsylvania and four locations in Delaware over a 2-year period. We checked the degree-day accumulation of each instrument and service weekly and made statistical comparisons among the instruments and services at each site. To further construct a comparison of the instruments, we noted distinctive qualities of each instrument, interviewed the manufacturers, and received feedback from SE PA IPM RG members who used the instruments. We evaluated the instruments' algorithms, durability, cost, temperature sampling interval, ease of use, time input required by the user, and other distinctive factors. Statistically, there were no significant differences in degree-day accumulations between the Biophenometer, Harvest-Guard, Datascribe, Weather Monitor II, Skybit, or weather service data. However, cost and time required to access/interpret data and personal preference should be major considerations in choosing an instrument or service to measure degree-days.


Sign in / Sign up

Export Citation Format

Share Document