scholarly journals Comparing the Currents Measured by CARTHE, CODE and SVP Drifters as a Function of Wind and Wave Conditions in the Southwestern Mediterranean Sea

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 353
Author(s):  
Pierre-Marie Poulain ◽  
Luca Centurioni ◽  
Tamay Özgökmen

Instruments drifting at the ocean surface are quasi-Lagrangian, that is, they do not follow exactly the near-surface ocean currents. The currents measured by three commonly-used drifters (CARTHE, CODE and SVP) are compared in a wide range of sea state conditions (winds up to 17 m/s and significant wave height up to 3 m). Nearly collocated and simultaneous drifter measurements in the southwestern Mediterranean reveal that the CARTHE and CODE drifters measure the currents in the first meter below the surface in approximately the same way. When compared to SVP drogued at 15 m nominal depth, the CODE and CARTHE currents are essentially downwind (and down-wave), with a typical speed of 0.5–1% of the wind speed. However, there is a large scatter in velocity differences between CODE/CARTHE and SVP for all wind and sea state conditions encountered, principally due to vertical and horizontal shears not related to the wind. For the CODE drifter with wind speed larger than 10 m/s and significant wave height larger than 1 m, about 30–40% of this difference can be explained by Stokes drift.

2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
He Wang ◽  
Jingsong Yang ◽  
Jianhua Zhu ◽  
Lin Ren ◽  
Yahao Liu ◽  
...  

Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.


Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


Author(s):  
Adil Rasheed ◽  
Jakob Kristoffer Süld ◽  
Mandar Tabib

Accurate prediction of near surface wind and wave height are important for many offshore activities like fishing, boating, surfing, installation and maintenance of marine structures. The current work investigates the use of different methodologies to make accurate predictions of significant wave height and local wind. The methodology consists of coupling an atmospheric code HARMONIE and a wave model WAM. Two different kinds of coupling methodologies: unidirectional and bidirectional coupling are tested. While in Unidirectional coupling only the effects of atmosphere on ocean surface are taken into account, in bidirectional coupling the effects of ocean surface on the atmosphere are also accounted for. The predicted values of wave height and local wind at 10m above the ocean surface using both the methodologies are compared against observation data. The results show that during windy conditions, a bidirectional coupling methodology has better prediction capability.


2021 ◽  
Author(s):  
Stefan Dinger ◽  
Andrei Casali ◽  
Frank Lind ◽  
Azwan Hadi Keong ◽  
Johnny Bårdsen ◽  
...  

Abstract Coiled tubing (CT) operations in the Norwegian continental shelf (NCS) often require a long and large-outside-diameter pipe due to big diameter completions, deep wells, and the need for high annular velocity during fluid circulation. However, getting the CT string onboard becomes a challenge when the crane lifting limit is 35 t, and using a standalone crane barge increases the cost of the operation. The alternative is spooling the CT from a vessel to the platform. Boat spooling is done by placing the CT string on a floating vessel with dynamic positioning while the standard CT injector head is secured at the edge of the platform to pull the pipe from the vessel to an empty CT reel on the platform. The boat is equipped with a CT guide; special tension clamps; and an emergency disconnect system, which consists of a standard CT shear-seal blowout preventer. The technique requires careful study of the platform structure for placement of the injector head support frame, metocean data of the field, and equipment placement on the vessel and platform. The boat spooling operation of a 7,700-m long, 58.7-t, 2.375-in.-outside-diameter CT string was successfully executed for a platform at 70-m height from mean sea level. The total operating time from hooking up the vessel to successfully spooling the string only took 12 hours. Historically for the region, the method has been attempted in sea state of up to 4-m wave height and 16 knots maximum wind speed. For this operation, the spooling was carried out during an average sea state of 2-m wave height and 15-knot wind speed. The continuous CT string allows a telemetry cable to be installed inside the pipe after the CT is spooled onto the platform reel, enabling real-time downhole measurements during the intervention. Such installation is not possible or presents high risk if the CT string is taken onboard by splicing two sections of pipe together with a spoolable connector or butt welding. From a cost perspective, the boat-spooling operation had up to 80% direct cost saving for the operator when compared to other methods of lifting a single CT string onboard, such as using a motion-compensated barge crane. The planning for the boat spooling included several essential contingency plans. Performing a CT boat spooling operation in a complex environment is possible and opens new opportunities to use longer and heavier CT strings, with lower mobilization costs. Such strings enable more advanced and efficient interventions, with the option of using real-time CT downhole measurements during the execution of a wide range of production startup work. This, in turn, is critical to support the drilling of more extended reach wells, which allow access to untapped reservoirs.


2020 ◽  
Vol 8 (12) ◽  
pp. 1039
Author(s):  
Ben Timmermans ◽  
Andrew G. P. Shaw ◽  
Christine Gommenginger

Measurements of significant wave height from satellite altimeter missions are finding increasing application in investigations of wave climate, sea state variability and trends, in particular as the means to mitigate the general sparsity of in situ measurements. However, many questions remain over the suitability of altimeter data for the representation of extreme sea states and applications in the coastal zone. In this paper, the limitations of altimeter data to estimate coastal Hs extremes (<10 km from shore) are investigated using the European Space Agency Sea State Climate Change Initiative L2P altimeter data v1.1 product recently released. This Sea State CCI product provides near complete global coverage and a continuous record of 28 years. It is used here together with in situ data from moored wave buoys at six sites around the coast of the United States. The limitations of estimating extreme values based on satellite data are quantified and linked to several factors including the impact of data corruption nearshore, the influence of coastline morphology and local wave climate dynamics, and the spatio-temporal sampling achieved by altimeters. The factors combine to lead to considerable underestimation of estimated Hs 10-yr return levels. Sensitivity to these factors is evaluated at specific sites, leading to recommendations about the use of satellite data to estimate extremes and their temporal evolution in coastal environments.


2020 ◽  
Vol 12 (20) ◽  
pp. 3367
Author(s):  
Kaoru Ichikawa ◽  
Xi-Feng Wang ◽  
Hitoshi Tamura

Satellite altimetry is a unique system that provides repeated observations of significant wave height (SWH) globally, but its measurements could be contaminated by lands, slicks, or calm water with smooth surface. In this study, capability of subwaveform retrackers against 20 Hz Jason-2 measurements is examined in the calm Celebes Sea. Distances between contamination sources and Jason-2 observation points can be determined using sequentially assembled adjacent waveforms (radargram). When no contamination sources are present within a Jason-2 footprint, subwaveform retrackers are in excellent agreement with the Sensor Geophysical Data Records (SGDR) MLE4 retracker that uses full-length waveforms, except that Adaptive Leading Edge Subwaveform (ALES) retracker has a positive bias in a calm sea state (SWH < 1 m), which is not unusual in the Celebes Sea. Meanwhile, when contamination sources exist within 4.5 km from Jason-2 observation points, SGDR occasionally estimates unrealistically large SWH values, although they could be partly eliminated by sigma0 filters. These datasets are then compared with WAVEWATCH III model, resulting in good agreement. The agreement becomes worse if swells from the Pacific is excluded in the model, suggesting constant presence of swells despite the semi-enclosed nature. In addition, outliers are found related with locally-confined SWH events, which could be inadequately represented in the model.


2008 ◽  
Vol 38 (7) ◽  
pp. 1597-1606 ◽  
Author(s):  
T. Lamont-Smith ◽  
T. Waseda

Abstract Wave wire data from the large wind wave tank of the Ocean Engineering Laboratory at the University of California, Santa Barbara, are analyzed, and comparisons are made with published data collected in four other wave tanks. The behavior of wind waves at various fetches (7–80 m) is very similar to the behavior observed in the other tanks. When the nondimensional frequency F* or nondimensional significant wave height H* is plotted against nondimensional fetch x*, a large scatter in the data points is found. Multivariate regression to the dimensional parameters shows that significant wave height Hsig is a function of U2x and frequency F is a function of U1.25x, where U is the wind speed and x is the horizontal distance, with the result that in general for wind waves at a particular fetch in a wave tank, approximately speaking, the wave frequency is inversely proportional to the square root of the wind speed and the wavelength is proportional to the wind speed. Similarly, the wave height is proportional to U1.5 and the orbital velocity is proportional to U. Comparison with field data indicates a transition from this fetch law to the conventional one [the Joint North Sea Wave Project (JONSWAP)] for longer fetch. Despite differences in the fetch relationship for the wave tank and the field data, the wave height and wave period satisfy Toba’s 3/2 power law. This law imposes a strong constraint on the evolution of wind wave energy and frequency; consequently, the energy and momentum retention rate are not independent. Both retention rates grow with wind speed and fetch at the short fetches present in the wave tank. The observed retention rates are completely different from those typically observed in the field, but the same constraint (Toba’s 3/2 law) holds true.


1995 ◽  
Vol 117 (4) ◽  
pp. 294-297 ◽  
Author(s):  
J. C. Teixeira ◽  
M. P. Abreu ◽  
C. Guedes Soares

Two wind models were developed and their results were compared with data gathered during the Wangara experiment, so as to characterize their uncertainty. One of the models was adopted to generate the wind fields used as input to a second generation wave model. The relative error in the wind speed was considered in order to assess the uncertainties of the predictions or the significant wave height. Different time steps for the wind input were also used to determine their effect on the predicted significant wave height.


2015 ◽  
Vol 74 (5) ◽  
Author(s):  
Muhammad Zikra ◽  
Noriaki Hashimoto ◽  
Kodama Mitsuyasu ◽  
Kriyo Sambodho

Over recent years, ocean wave climate change due to global warming has attracted a lot of attention not only coastal and offshore engineer but also stakeholders in the marine industry. There is a wide range of application in ocean environment that require information on ocean wave climate data, such as ships design, design of offshore platforms and coastal structures or naval industry. In this research, monthly variation in significant wave height is studied using MRI-AGCM3.2 wind climate data for 25 year period from 1979-2003. The 25 year significant wave height simulation derived from JMA/MRI-AGCM wind climate data. The JMA/MRI-AGCM climate data were input into WAM model. The results showed that the monthly variability of significant wave height in the Northern Hemisphere is greater than in the Southern Hemisphere. Meanwhile, most of the equatorial regions are in calm condition all year. 


Sign in / Sign up

Export Citation Format

Share Document