scholarly journals Soil Management and Slope Impacts on Soil Properties, Hydrological Response, and Erosion in Hazelnut Orchard

Soil Systems ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 5 ◽  
Author(s):  
Leon Josip Telak ◽  
Ivan Dugan ◽  
Igor Bogunovic

Proper soil management is crucial to mitigate soil degradation. Hazelnut orchards are often raised on slopes and intensively managed, which makes them similar to the already defined highly erodible land uses like vineyards. This research aims to assess the impacts of soil management and the slope on the soil properties, hydrological response, and erosion in the hazelnut orchard. At eastern Croatia on Cambisols, four treatments were chosen, representing two soil managements in the study area (herbicide and mulched) on two different slope inclinations (high ~9° and low ~4.5°), for rainfall simulation experiments and soil sampling. The herbicide treatments on both slopes removed soil cover and reduced (p < 0.05) soil organic matter, mean weight diameter, and water-stable aggregates. Mulched treatments recorded a lower (p < 0.05) bulk density. These soil properties affected soil hydrological response, as the reduction of infiltration in herbicide plots lead to higher water and sediment losses. The higher slope increased erosion in herbicide soil to over 2.2 t ha−1. Mulching was shown as a superior practice as it enhances soil properties and reduces soil erosion, even reducing the effect of the higher slope on erosional processes.

2020 ◽  
Vol 68 (4) ◽  
pp. 328-337
Author(s):  
Igor Bogunovic ◽  
Leon Josip Telak ◽  
Paulo Pereira ◽  
Vilim Filipovic ◽  
Lana Filipovic ◽  
...  

AbstractThis research aims to assess the impacts of soil use management on runoff, soil losses, and their main soil controls in vegetable cropland (CROP), tilled olives (OT), and grass-covered olive orchards (OGC) on Leptosol in Croatia. Soil analysis and rainfall simulation experiments were conducted to quantify runoff (Run), soil, and nutrient losses. Bulk density (BD) was significantly higher at OT plots, in addition to the CROP plots. Water-stable aggregates (WSA), mean weight diameter (MWD), and soil organic matter (OM) were significantly higher in OGC plots compared to the other land uses. Run and soil loss (SL) were significantly higher in CROP and OT plots compared to the OGC plots. The CROP plots showed soil management that can be considered as unsustainable with 52, 68- and 146-times higher losses of phosphorus (P loss), nitrogen (N loss), and carbon (C loss) compared to the OGC plots. The principal component analysis showed that MWD was associated with vegetation cover (VC), water-holding capacity (WHC), WSA, OM, total nitrogen (TN), time to ponding (TP), and time to runoff (TR). These variables were negatively related to P2O5, Run, SL, and P, N, and C loss. Results indicate the need for the adoption of conservation strategies in croplands and olive orchards.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1539 ◽  
Author(s):  
Artemi Cerdà ◽  
Jesús Rodrigo-Comino ◽  
Tuğrul Yakupoğlu ◽  
Turgay Dindaroğlu ◽  
Enric Terol ◽  
...  

There is an urgent need to implement environmentally friendly agriculture management practices to achieve the Sustainable Goals for Development (SDGs) of the United Nations by 2030. Mediterranean agriculture is characterized by intense and millennia-old tillage management and as a consequence degraded soil. No-Tillage has been widely examined as a solution for soil degradation but No-Tillage relies more on the application of herbicides that reduce plant cover, which in turn enhances soil erosion. However, No-Tillage with weed cover should be researched to promote organic farming and sustainable agriculture. Therefore, we compare Tillage against No-Tillage using weed cover as an alternative strategy to reduce soil losses in persimmon plantations, both of them under organic farming management. To achieve these goals, two plots were established at “La Canyadeta” experimental station on 25-years old Persimmon plantations, which are managed with Tillage and No-Tillage for 3 years. A survey of the soil cover, soil properties, runoff generation and initial soil losses using rainfall simulation experiments at 55 mm h−1 in 0.25 m2 plot was carried out. Soils under Tillage are bare (96.7%) in comparison to the No-Tillage (16.17% bare soil), with similar organic matter (1.71 vs. 1.88%) and with lower bulk densities (1.23 vs. 1.37 g cm3). Tillage induces faster ponding (60 vs. 92 s), runoff (90 vs. 320 s) and runoff outlet (200 vs. 70 s). The runoff discharge was 5.57 times higher in the Tillage plots, 8.64 for sediment concentration and 48.4 for soil losses. We conclude that No-tillage shifted the fate of the tilled field after 3 years with the use of weeds as a soil cover conservation strategy. This immediate effect of No-Tillage under organic farming conditions is very promising to achieve the SDGs.


2019 ◽  
Vol 70 (2) ◽  
pp. 137-146
Author(s):  
Vladimír Šimanský ◽  
Martin Juriga ◽  
Łukasz Mendyk

Abstract An interaction between the slope position and type of soil management practices could be one of the most important factor affecting several soil properties including soil structure. Therefore, we evaluated selected soil properties including soil structure parameters in relation to slope gradient and soil management practices between Trakovice and Bučany villages (western Slovakia). The sampling sites were located in two adjacent, gently sloping fields with a NW-SE orientation. The sites also differ in soil management type: Field No. 1 was used as arable land with intensive cultivation (IC) of crops, while a greening system (GS) had been established on Field No. 2. Soil samples were taken from five geomorphological zones at each slope: summit, shoulder, back-slope, toe slope and flat terrain under the slope. Results showed that soil pH, content of soil organic matter (SOM) and carbonates depended on land use of the slopes. In GS, the water-stable macro-aggregates (WSAma) 0.5–3 mm (favourable size fraction) displayed statistical significant quadratic polynomial trend along the slope gradient. In IC the values of mean weight diameter of dry sieved aggregates (MWDd) decreased significantly along the slope gradient, while in GS the opposite trend was observed. In IC significant correlations between carbonates content (r=-0.775, P<0.01), humic acids (HA) content (r=0.654, P<0.05), colour quotients of humic substances (r=-0.706, P<0.05), colour quotients of HA (r=-0.723, P<0.05) and MWDd were determined. In GS higher content of carbonates was followed by a decrease in content WSAma, MWDd, mean weight diameter of wet sieved aggregates (MWDw) and stability index of aggregates. At the same time stabile and labile soil organic matter improved soil structure parameters in GS.


Author(s):  
Roger Moussa ◽  
Bruno Cheviron

Floods are the highest-impact natural disasters. In agricultural basins, anthropogenic features are significant factors in controlling flood and erosion. A hydrological-hydraulic-erosion diagnosis is necessary in order to choose the most relevant action zones and to make recommendations for alternative land uses and cultivation practices in order to control and reduce floods and erosion. This chapter first aims to provide an overview of the flow processes represented in the various possible choices of model structure and refinement. It then focuses on the impact of the spatial distribution and temporal variation of hydrological soil properties in farmed basins, representing their effects on the modelled water and sediment flows. Research challenges and leads are then tackled, trying to identify the conditions in which sufficient adequacy exists between site data and modelling strategies.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.


2004 ◽  
Vol 48 (3) ◽  
pp. 293-304
Author(s):  
José Carlos González-Hidalgo ◽  
Martín De Luís ◽  
Josep Raventós ◽  
Jordi Cortina ◽  
Juán Rafael Sánchez

CATENA ◽  
2019 ◽  
Vol 174 ◽  
pp. 95-103 ◽  
Author(s):  
S.D. Keesstra ◽  
J. Rodrigo-Comino ◽  
A. Novara ◽  
A. Giménez-Morera ◽  
M. Pulido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document