scholarly journals Historical Geomorphological Research of a Ligurian Coastal Floodplain (Italy) and Its Value for Management of Flood Risk and Environmental Sustainability

2018 ◽  
Vol 10 (10) ◽  
pp. 3727 ◽  
Author(s):  
Anna Roccati ◽  
Fabio Luino ◽  
Laura Turconi ◽  
Pietro Piana ◽  
Charles Watkins ◽  
...  

The alluvial plain of the Entella River (Eastern Liguria), historically affected by damaging flood events, has been heavily modified over the past 250 years by human activity and natural processes. A qualitative and quantitative analysis of the morphological and land use evolution of the Entella floodplain since the 18th century was carried out using base maps and aerial photos ranging from 1758 to 2016. These diverse sources were Geographical Information System (GIS) georeferenced. Additional information on land-use change was gathered from historical documents and recent research reports. The main transformations to the floodplain include morphological changes, e.g., narrowing, channelization, displacement of the river channel and the advance of the coastal line due to fills and embankments. In addition, there has been very significant urbanization with loss of vegetated and agricultural areas. Our results indicate the primary role of human disturbance on morphological changes and landscape modifications of the coastal floodplain, particularly over the last 200 years. Furthermore, the historical geomorphological and cartographical analysis we adopted to reconstruct the floodplain transformation represents an essential tool in flood risk mitigation and environmental sustainability management, particularly in an urbanized coastal plain historically affected by floods.

2020 ◽  
Vol 9 (12) ◽  
pp. 725
Author(s):  
Christos Tzioutzios ◽  
Aristeidis Kastridis

The potential of woodland and floodplain woodland plantations in a wide area, of high flood risk, along the Spey River (Scotland) is investigated, to mitigate the floods’ catastrophic impact. The spatial analysis required various datasets to be overlaid, to define the suitable sites for woodland and floodplain woodland establishment. These datasets that concern the topography, the physical and technical characteristics (existing woodland, road system, urban and rural areas, river system and open water areas, railway) and the protected sites of the study area were obtained and merged using Geographical Information System (GIS) techniques. The most suitable and unsuitable areas within the region were identified, using multi-criteria evaluation methods (Boolean approach). In total, 13 constraints were created by expressing true/false statements for each factor, and were combined together using spatial analysis tools. The results revealed the high potential of woodland and floodplain woodland plantations to prevent floods, with 59.2% of the total study area (177.5 km2) determined to be appropriate for such practices’ application. The River Dulnain tributary demonstrated the highest potential for floodplain woodland planting, followed by Rivers Avon and Fiddich, and the southwestern and northeastern Spey River parts. The methodology proposed is simple and provides rapid and accurate results at low cost, while the datasets can be easily accessed and are available in convenient type/format. This useful methodology for researchers and authorities could be applied successfully to similar watersheds, contributing significantly to flood risk mitigation and the enhancement of the flood-preventative measures’ planning efficiency.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Ignacio Agustin Gatti ◽  
Takashi Oguchi

<p><strong>Abstract.</strong> Floods frequently cause disasters worldwide. In Argentina, almost half of disasters are related to floods (Celis &amp; Herzer, 2003). During the period 1944 to 2005, 41 major floods occurred in urban areas in the country (Argentina Red Cross, 2010) with more than 13 million people affected. Luján (34°33′S, 59°07′W) is a city of about 110,000 people, situated 21 m above the mean sea level in a relatively plain area. It suffered from 21 floods between 1967 and 2018 with a result of about 14,600 evacuees and 3 dead people. The main cause of the floods is the overflow of the Luján River, which has an average flow of 5.37&amp;thinsp;m<sup>3</sup>/s (INA, 2007).</p><p> The National Disaster Risk Assessment guidelines (UNDP, 2010; UNSIDR, 2018) outline the use of qualitative or quantitative approaches to determinate the acceptable level of risk. Risk has been associated with a potential loss with different levels of certainty (Crichton, 1999; WMO, 2013), and it could be defined as a combination of hazard, exposure and vulnerability (Akhtar et al, 2018; Behanzin, 2015; Armeneakis et al., 2017; UNISDR, 2017) (Figure 1). If one of those elements is missing, risk is not defined. The hazard is related to the potential danger that the natural phenomenon has, which is inherent to the event itself, and it would be inundation scenarios in this study. Vulnerability has been defined by Cardona et al. (2012) as a propensity or predisposition to be adversely affected. That definition includes the characteristics of a person or a group, and their situation that influences their capacity to anticipate, cope with, resist, and recover from the adverse effects of physical events (Natenzon et al., 2005; González, 2009). The perspectives selected in the present work focus on working with social vulnerability which is linked to socio-economical population conditions and the possibility of these being affected. Spatial distribution of exposure (elements at risk) in proximity to a hazard is a significant factor of disaster risk (UNISDR, 2017). Some researchers (González et al., 1998; Villagrán De León, 2001; Moel et al., 2009) defined “exposure” as what can be affected by a flood such as buildings, land use, and population, the latter of which is a significant factor of disaster risk (UNISDR, 2017). Flood risk maps play an important role in decision-making, planning and implementing flood management options (WMO, 2013).</p><p> Geographical Information Systems (GIS) enable us to perform a spatial analysis of the elements of risk (hazard, vulnerability, and exposure) for Luján City. By creating categories from the selection of some indicators, it is possible to define which area is more likely to be impacted by a flood, which population and which infrastructure are more exposed, and who is more vulnerable. A final flood risk index is created with five categories based on risk values from 0 (lowest) to 1 (highest) (Figure 2).</p><p> Hazard analysis is made by using a 5-m Digital Elevation Model (DEM), rainfall data, land use information, drainage system (sewers and streams) and historical flood maps. Sources of vulnerability and exposure indicators are data from the last National Argentinian Census in the year 2010.</p><p> Although it is impossible to totally eliminate the flood risk, it is possible to mitigate some consequences. Findings from this study illustrate that some areas of higher flood risk coincide with areas of high flood hazard, more exposed, and more vulnerable. This methodology helps to develop disaster risk management strategies for settlements frequently flooded.</p>


Author(s):  
F. Carisi ◽  
A. Domeneghetti ◽  
A. Castellarin

Abstract. We propose and investigate the reliability of simplified graphical tools, which we term Hypsometric Vulnerability Curves, HVCs, for assessing flood vulnerability and risk over large geographical areas and for defining sustainable flood-risk mitigation strategies. These curves rely on the use of inundation scenarios simulated by means of quasi-two-dimensional (quasi-2-D) hydrodynamic models that reproduce the hydraulic behaviour of the floodable area outside the main embankment system of the study river reach. We present an application of HVCs constructed on the basis of land use and census data collected during the last 50 years for assessing the recent dynamics of the flood vulnerability and risk over a large floodable area along a 350 km stretch of the River Po (Northern Italy). We also compared the proposed simplified approach with a traditional approach based on simulations performed with the fully-2-D hydrodynamic model TELEMAC-2-D, a widely employed and well-known 2-D finite-element scheme. By means of this comparison, we characterize the accuracy of the proposed simplified approach (i.e. quasi-2-D model and HVCs) for flood-risk assessment over large geographical areas and different historical land-use scenarios.


2021 ◽  
Author(s):  
Devanantham abijith ◽  
Subbarayan Saravanan

Abstract Land use and land cover (LULC) change analysis and forecasting aids the upcoming generation in research and evaluate the global climate change for managing and controlling environmental sustainability. This research analyzes the Northern TN coast, which is under both natural and anthropogenic stress. The analysis of LULC changes and LULC projections for the region between 2009-2019 and 2019-2030 was performed utilizing Google Earth Engine (GEE), TerrSet, and Geographical Information System (GIS) tools. LULC image is generated from Landsat images and classified in GEE using Random Forest (RF). LULC maps were then framed with the CA- Markov model to forecast future LULC change. The CA-Markov’s Land change modeler (LCM) was set up to create future LULC. It was carried out in four steps: (1) Change analysis, (2) Transition potential, (3) Change prediction, and (4) Model validation. For analyzing change statistics, the study region is divided into zone 1 and zone 2. In both zones, the water body shows a decreasing trend, and built-up areas are in increasing trend. Barren land and vegetation classes are under stress and developing into built-up. The overall accuracy was above 89%, and the kappa coefficient was above 87% for all three years. This region is highly susceptible to inland floods, coastal floods, and other natural disasters; thus, this study’s results support future development plans and decision-making.


2019 ◽  
Vol 11 (21) ◽  
pp. 6003 ◽  
Author(s):  
Ashraf Abdelkarim ◽  
Ahmed Gaber ◽  
Ibtesam Alkadi ◽  
Haya Alogayell

The current study aimed at measuring the impact of the change in land-use morphology on the increase of flood risk through its application to the case of the Riyadh–Dammam train track in Saudi Arabia. The track was exposed to drift on 18 February 2017, over a length of 10 km, in the district of Dhahran in the capital of Dammam. Flooding caused the train to drift off its track and resulted in damage to lives, property, and infrastructure. This resulted from human interventions in the preplanning land uses and changing the morphology of the land by encroaching on the valleys, which resulted in the loss of the environmental and ecological balance in the study area. In order to achieve these goals, land-use changes in the study area were monitored by analyzing successive images from the GEO-I-1 satellite with a resolution of 60 cm for the years 2011 and 2017, before and after the train drift, using the maximum likelihood classification process provided in ERDAS IMAGINE 2016. GIS was used in the processing of 1 m digital elevation models to extract the morphological changes of the wadies between 2011 and 2017. A hydrological model (HEC–HMS) was used in calculating the (flood) hydrograph curve of the wadies basins and estimating the calculation of flood water quantities and its flow rates based on the Soil Conservation Services (SCS) Unit Hydrograph Method. Rain depth was analyzed and estimated for different return periods. The HEC–RAS hydraulic modeling program was employed in developing a 2D model to calculate the velocity, depth, and spread of the flood in order to apply the risk matrix method.


2021 ◽  
Vol 1 (2) ◽  
pp. 14-22

Abstract: In this study, the runoff curve number map for Navrud watershed in north of Iran was determined based on the soil hydrological group, land-use and land-cover using remote sensing and geographical information system. For this objective, land-cover and Land-use situation maps were prepared using NDVI index and Landsat satellite data, respectively. Runoff curve number maps were determined using the overlay prepared maps in GIS and SCS table. For evaluating the accuracy of estimated curve numbers, runoff maximum discharge was calculated using HEC-HMS model and compared to the observed values. Furthermore, the climate change trend and probabilistic distribution functions were considered to predict the flood risk. The effects of climate change were defined by atmospheric general circulation models for A1B, A2 and B1 scenarios. Error analysis between calculated and observed discharge showed that watershed curve number was determined with acceptable accuracy.


2021 ◽  
Author(s):  
Karen Gabriels ◽  
Patrick Willems ◽  
Jos Van Orshoven

Abstract. Sustainable flood risk management encompasses the implementation of nature-based solutions to mitigate flood risk. These measures include the establishment of land use types with a high (e.g. forest patches) or low (e.g. sealed surfaces) water retention and infiltration capacity at strategic locations in the catchment. This paper presents an approach for assessing the relative impact of such land use changes on economic flood damages and associated risk. This spatially explicit approach integrates a reference situation, a flood damage model and a rainfall-runoff model, considering runoff re-infiltration and propagation, to determine relative flood risk mitigation or increment related to the implementation of land use change scenarios. The applicability of the framework is illustrated for a 4800 ha undulating catchment in the region of Flanders, Belgium by assessing afforestation of 187.5 ha (3.9 %), located mainly in the valleys, and sealing of 187.5 ha, situated mainly at higher elevations. These scenarios result in a risk reduction of 57 % (100 856 €) for the afforestation scenario and a risk increment of


2010 ◽  
Vol 2 (5) ◽  
pp. 1327-1344 ◽  
Author(s):  
José I. Barredo ◽  
Guy Engelen

Author(s):  
Verónica Lango-Reynoso ◽  
Karla Teresa González-Figueroa ◽  
Fabiola Lango-Reynoso ◽  
María del Refugio Castañeda-Chávez ◽  
Jesús Montoya-Mendoza

Objective: This article describes and analyzes the main concepts of coastal ecosystems, these as a result of research concerning land-use change assessments in coastal areas. Design/Methodology/Approach: Scientific articles were searched using keywords in English and Spanish. Articles regarding land-use change assessment in coastal areas were selected, discarding those that although being on coastal zones and geographic and soil identification did not use Geographic Information System (GIS). Results: A GIS is a computer-based tool for evaluating the land-use change in coastal areas by quantifying variations. It is analyzed through GIS and its contributions; highlighting its importance and constant monitoring. Limitations of the study/Implications: This research analyzes national and international scientific information, published from 2007 to 2019, regarding the land-use change in coastal areas quantified with the digital GIS tool. Findings/Conclusions: GIS are useful tools in the identification and quantitative evaluation of changes in land-use in coastal ecosystems; which require constant evaluation due to their high dynamism.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Matheus Supriyanto Rumetna ◽  
Eko Sediyono ◽  
Kristoko Dwi Hartomo

Abstract. Bantul Regency is a part of Yogyakarta Special Province Province which experienced land use changes. This research aims to assess the changes of shape and level of land use, to analyze the pattern of land use changes, and to find the appropriateness of RTRW land use in Bantul District in 2011-2015. Analytical methods are employed including Geoprocessing techniques and analysis of patterns of distribution of land use changes with Spatial Autocorrelation (Global Moran's I). The results of this study of land use in 2011, there are thirty one classifications, while in 2015 there are thirty four classifications. The pattern of distribution of land use change shows that land use change in 2011-2015 has a Complete Spatial Randomness pattern. Land use suitability with the direction of area function at RTRW is 24030,406 Ha (46,995406%) and incompatibility of 27103,115 Ha or equal to 53,004593% of the total area of Bantul Regency.Keywords: Geographical Information System, Land Use, Geoprocessing, Global Moran's I, Bantul Regency. Abstrak. Analisis Perubahan Tata Guna Lahan di Kabupaten Bantul Menggunakan Metode Global Moran’s I. Kabupaten Bantul merupakan bagian dari Provinsi Daerah Istimewa Yogyakarta yang mengalami perubahan tata guna lahan. Penelitian ini bertujuan untuk mengkaji perubahan bentuk dan luas penggunaan lahan, menganalisis pola sebaran perubahan tata guna lahan, serta kesesuaian tata guna lahan terhadap RTRW yang terjadi di Kabupaten Bantul pada tahun 2011-2015. Metode analisis yang digunakan antara lain teknik Geoprocessing serta analisis pola sebaran perubahan tata guna lahan dengan Spatial Autocorrelation (Global Moran’s I). Hasil dari penelitian ini adalah penggunaan tanah pada tahun 2011, terdapat tiga puluh satu klasifikasi, sedangkan pada tahun 2015 terdapat tiga puluh empat klasifikasi. Pola sebaran perubahan tata guna lahan menunjukkan bahwa perubahan tata guna lahan tahun 2011-2015 memiliki pola Complete Spatial Randomness. Kesesuaian tata guna lahan dengan arahan fungsi kawasan pada RTRW adalah seluas 24030,406 Ha atau mencapai 46,995406 % dan ketidaksesuaian seluas 27103,115 Ha atau sebesar 53,004593 % dari total luas wilayah Kabupaten Bantul. Kata Kunci: Sistem Informasi Georafis, tata guna lahan, Geoprocessing, Global Moran’s I, Kabupaten Bantul.


Sign in / Sign up

Export Citation Format

Share Document