scholarly journals Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy

2019 ◽  
Vol 11 (21) ◽  
pp. 6150
Author(s):  
Gigliola Ausiello ◽  
Luca Di Girolamo ◽  
Antonio Marano

This paper highlights the development of strategies using a green approach that can be adopted to manage interventions to promote energy efficiency. It focuses on the result of a case study carried out on an existing residential building located in Naples, Italy. The green methodology adopted in this study met the needs and requests of the building owner, who asked for natural materials. We assessed the possibility of maximizing achievable thermal energy savings and hygrometric behavior, starting from the climatic characteristics. The first step was to evaluate the aspects related to sunshine, thermal inputs, natural lighting, and natural ventilation, and prevailing winds. Subsequently, the casing was redesigned with the aim of minimizing energy consumption by using natural materials. Such materials added value to the project by combining high performance and considerations of the residents’ health. The objective here was to identify strategies for the well-being of residents both in winter and summer, by reducing energy consumption and installation management costs as well as increasing livability.

2021 ◽  
Vol 855 (1) ◽  
pp. 012001
Author(s):  
D Mann ◽  
C Yeung ◽  
R Habets ◽  
Z Vroon ◽  
P Buskens

Abstract With constantly progressing climate change and global warming, we face the challenge to reduce our energy consumption and CO2 emission. To increase the energy-efficiency in buildings, we developed a thermochromic coating for smart windows which is optimized for intermediate climates. Here we present a building energy simulation study for the use of our smart window in the four main residential building types in the Netherlands. In the study we show that for all building types energy savings between 15-30% can be achieved. Hereby the impact of the windows on energy consumption is dependent on the window surface area as well as the total floor space. Furthermore we show that by the use of our new smart window, where the thermochromic coating is combined with a standard low-e coating, annual cost savings for energy between 220-445 € for a single household can be achieved. The thermochromic coating usually accounts for half of these cost savings, that is an addition in cost savings between 6-7.5 €/m2 glass. Due to the low material and processing costs for the thermochromic coating, a return on invest within 7 years should be feasible with these annual cost savings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


Author(s):  
R. David Beltrán ◽  
Juan Kastillo ◽  
Isabel Miño-Rodríguez ◽  
Carlos Naranjo-Mendoza ◽  
Carlos Ávila

Natural ventilation has been studied as an effective strategy in order to reduce energy consumption without compromising occupant’s hygrothermal comfort in warm-humid climates. However, the main concern about the current state of art in the use of Building Energy Simulation (BES) as an approach to natural ventilation is the definition of input data which usually do not represent the real state of the buildings in the studied region. Within this context, the main contribution of this research is to propose a methodology through which the real state of buildings can be evaluated. By this analysis, valid input parameters was found to exploit the capabilities of BES and CFD simulations to fulfill the main objective of this study, which is to assess the impact of natural ventilation strategies in the energy consumption of HVAC systems and occupants hygrothermal comfort. Four natural ventilation strategies were evaluated: single sided ventilation, cross ventilation, solar chimney and double façade. The results show that the exclusive use of natural ventilation is ineffective to ensure hygrothermal comfort in a building with high thermal loads in a warm-humid climate like Guayaquil. However, by using a hybrid system (natural ventilation/dehumidification and cooling) cooling energy consumption can be reduced in up to 10.6% without compromising occupant’s hygrothermal comfort. Due to the promising results regarding energy savings, further research will aim to evaluate the impact of other passive strategies in energy consumption.


2021 ◽  
Author(s):  
Marilia de Oliveira Rezende ◽  
Marcella Ruschi Mendes Saade ◽  
Andréa Oliveira Nunes ◽  
Vanessa Gomes da Silva ◽  
Virgínia Aparecida Silva Moris ◽  
...  

Abstract Lean and Green seeks to increase added value and reduce waste generation, while also improving environmental sustainability performance in production activities. However, no studies were found exploring the potential results by combining Lean and Green with eco-efficiency assessments in the construction sector. Therefore, this paper aimed at proposing and testing a Lean and Green approach in three steps. Step 1 was based on the Value Stream Mapping application to calculate the Value Added of construction activities; step 2 focused on the Life Cycle Assessment of evaluated construction activities, and step 3 performed an eco-efficiency assessment of construction sites to guide decision-makers on selecting more lean and sustainable construction materials and strategies. A case study was developed for a 300m²-house construction considering two build options (reinforced concrete frame vs. light steel frame). The results affirm that light steel framing showed a Value Added 43% higher than the reinforced concrete in step 1, whilst having 8% less Global Warming Potential impacts in step 2. Step 3 concluded that light steel framing was 1.38 times more eco-efficient than the concrete structure. The proposed approach can be suitable for any building system evaluation in terms of construction technologies, materials, and/or production strategies and investigations towards more sustainable production.


2021 ◽  
Vol 6 (2) ◽  
pp. 03-17
Author(s):  
Gazal Dandia ◽  
◽  
Pratheek Sudhakaran ◽  
Chaitali Basu ◽  
◽  
...  

Introduction: High energy consumption by buildings is a great threat to the environment and one of the major causes of climate change. With a population of 1.4 billion people and one of the fastest-growing economies in the world, India is extremely vital for the future of global energy markets. The energy demand for construction activities continues to rise and it is responsible for over one-third of global final energy consumption. Currently, buildings in India account for 35% of total energy consumption and the value is growing by 8% annually. Around 11% of total energy consumption are attributed to the commercial sector. Energy-efficient retrofitting of the built environments created in recent decades is a pressing urban challenge. Presently, most energy-efficient retrofit projects focus mainly on the engineering aspects. In this paper, we evaluate various retrofitting options, such as passive architectural interventions, active technological interventions, or a combination of both, to create the optimum result for the selected building. Methods: Based on a literature study and case examples, we identified various energy-efficient retrofit measures, and then examined and evaluated those as applied to the case study of Awas Bhawan (Rajasthan Housing Board Headquarters), Jaipur, India. For the evaluation, we developed a simulation model using EQuest for each energy measure and calculated the resultant energy savings. Then, based on the cost of implementation and the cost of energy saved, we calculated the payback period. Finally, an optimum retrofit solution was formulated with account for the payback period and ease of installation. Results and discussion: The detailed analysis of various energy-efficient retrofit measures as applied to the case study indicates that the most feasible options for retrofit resulting in optimum energy savings with short payback periods include passive architecture measures and equipment upgrades.


Sign in / Sign up

Export Citation Format

Share Document