scholarly journals Size-Segregated Particulate Matter in a Selected Sports Facility in Poland

2019 ◽  
Vol 11 (24) ◽  
pp. 6911 ◽  
Author(s):  
Bralewska ◽  
Rogula-Kozłowska ◽  
Bralewski

The aims of this study were to determine the concentration of particulate matter, analyze the percentage share of four particulate matter subfractions (PM1, PM2.5, PM4, PM10) in TSP (total mass of particulate matter (PM)) in a typical Polish sports hall at different day periods during heating and non-heating seasons, and compare the average daily doses of respirable dust (PM4) for three groups of the sports hall users (pupils, teachers, and athletes). Gravimetric measurements of PM4 and TSP concentrations and optical measurements of the concentrations of five PM fractions (PM1, PM2.5, PM4, PM10, PM100) were conducted for 8 hours a day, simultaneously inside and outside the hall, for 20 days each in summer and winter. During training, PM mass was concentrated mainly in coarse particles (PM2.5–100) (summer—55%, winter—35%). Without activity, the main part of PM mass was from fine particles (PM2.5, summer—59%, winter—75%). In summer, PM inside the hall originated mainly from internal sources. In winter, the fine PM concentration was affected by outdoor sources. The daily doses of PM4 for different groups of sports hall users indicate that the health exposure of sports practitioners to PM may be greater than for non-practitioners staying in the same conditions.

Author(s):  
Karolina Bralewska ◽  
Wioletta Rogula-Kozłowska ◽  
Dominika Mucha ◽  
Artur Jerzy Badyda ◽  
Magdalena Kostrzon ◽  
...  

This study aimed to evaluate the mass concentration of size-resolved (PM1, PM2.5, PM4, PM10, PM100) particulate matter (PM) in the Wieliczka Salt Mine located in southern Poland, compare them with the concentrations of the same PM fractions in the atmospheric air, and estimate the dose of dry salt aerosol inhaled by the mine visitors. Measurements were conducted for 2 hours a day, simultaneously inside (tourist route, passage to the health resort, health resort) and outside the mine (duty-room), for three days in the summer of 2017 using DustTrak DRX devices (optical method). The highest average PM concentrations were recorded on the tourist route (54–81 µg/m3), while the lowest was in the passage to the health resort (49–62 µg/m3). At the same time, the mean outdoor PM concentrations were 14–20 µg/m3. Fine particles constituting the majority of PM mass (68–80%) in the mine originated from internal sources, while the presence of coarse particles was associated with tourist traffic. High PM deposition factors in the respiratory tract of children and adults estimated for particular mine chambers (0.58–0.70), the predominance of respirable particles in PM mass, and the high content of NaCl in PM composition indicate high health benefits for mine visitors.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Stephan Schwander ◽  
Clement D. Okello ◽  
Juergen Freers ◽  
Judith C. Chow ◽  
John G. Watson ◽  
...  

Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5(fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m3in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%–55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health.


2001 ◽  
Vol 71 (3) ◽  
pp. 433-439 ◽  
Author(s):  
Katalin Bodor ◽  
Zsolt Bodor ◽  
Robert Szep

The comprehensive investigation of the elemental characteristics in fine and coarse particles at Bucharest was carried out. The daily samples of PM2.5 and PM10 particulate matter were collected at eight monitoring stations for a one-year period, and concentrations of Cd, Ni, Pb elements were analyzed. The results show that PMs and trace elements were present in high concentrations in Bucharest. The annual concentrations of PM10 and PM2.5 were 31.57 μg/m3 and 21.30 μg/m3, respectively. In Bucharest, the average concentration ratio of fine (PM2.5) and coarse particulates (PM10) was 0.67. Trace elements concentration carried by the PM2.5 was higher than the concentration detected from PM10. The Cd, Ni, and Pb accumulation was higher by 55.16%, 37.46% and 29.14% in fine particles than in coarse particles. The annual mean trace element concentration from PM2.5 and PM10 was in the case of Cd 0.22/0.24 ng/m3, for Ni 3.28/3.14 ng/m3 and for Pb 5.61/6.44 ng/m3, respectively. The highest Spearman correlation was found between Cd and Ni with correlation coefficient of 0.62 in PM2.5 and 0.48 in PM10, which suggests that they share common sources. The health risk indexes were estimated for both adults and children thanks to the trace elements from the particulate matter (PM), and the results revealed that inhalation was the major exposure pathway in both cases.


Buildings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Amy Kim ◽  
Lysandra Medal ◽  
Shuoqi Wang ◽  
Timothy Larson

The air quality inside airport terminal buildings is a lesser studied area compared to ambient air quality at the airport. The contribution of outdoor particulate matter (PM), aircraft traffic, and passenger traffic to indoor PM concentration is not well understood. Using the largest airport in Southeast Asia as the study site (extends 17.9 square kilometers), the objective of this paper is to conduct a preliminary analysis to examine the mass concentrations of fine particles, including PM1 and PM2.5, and coarse particles PM2.5–10 inside a four-story terminal building spanning 400,000 square meters in Jakarta, Indonesia. The results showed the indoor/outdoor (I/O) ratio of 0.42 for PM1 with 15-min time lag and 0.33 for PM2.5 with 30-min time lag. The aircraft traffic appeared to have a significant impact on indoor PM1 and PM2.5, whereas the passenger traffic showed an influence on indoor PM2.5–10.


2013 ◽  
Vol 13 (5) ◽  
pp. 2455-2470 ◽  
Author(s):  
F. Costabile ◽  
F. Barnaba ◽  
F. Angelini ◽  
G. P. Gobbi

Abstract. Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol single scattering albedo (dSSA), and the extinction, scattering and absorption Angstrom exponents (EAE, SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed the investigation of the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show EAE > 1.5, whilst EAE < 2 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. The proposed paradigm agrees with aerosol observations performed during past major field campaigns, this indicating that relations concerning the paradigm have a general validity.


2012 ◽  
Vol 12 (7) ◽  
pp. 17503-17538 ◽  
Author(s):  
F. Costabile ◽  
F. Barnaba ◽  
F. Angelini ◽  
G. P. Gobbi

Abstract. Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol Single Scattering Albedo (dSSA), and the Scattering and Absorption Angstrom Exponents (SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed to investigate the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that: (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show SAE > 1.5, whilst SAE < 1 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. A strict agreement was found when comparing the proposed paradigm to aerosol observations performed during past major field campaigns.


2016 ◽  
Vol 16 (1) ◽  
pp. 1-19 ◽  
Author(s):  
S. L. Tian ◽  
Y. P. Pan ◽  
Y. S. Wang

Abstract. Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65–1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43–0.65 µm, sulfate and nitrate, which have a size range of 0.65–1.1 µm, calcium, which has a size range of 5.8–9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1–9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8 % for coarse particles), coal combustion (17.7 % vs. 7.8 %), biomass burning (11.1 % vs. 11.8 %), industrial pollution (12.1 % vs. 5.1 %), road dust (8.4 % vs. 10.9 %), vehicle emissions (19.6 % for fine particles), mineral dust (22.6 % for coarse particles) and organic aerosol (23.6 % for coarse particles). The contributions of the first four factors and vehicle emissions were higher on haze days than non-haze days, while the reverse is true for road dust and mineral dust. The sources' contribution generally increased as the size decreased, with the exception of mineral dust. However, two peaks were consistently found in the fine and coarse particles. In addition, the sources' contribution varied with the wind direction, with coal and oil combustion products increasing during southern flows. This result suggests that future air pollution control strategies should consider wind patterns, especially during episodes of haze. Furthermore, the findings of this study indicated that the PM2.5-based data set is insufficient for determining source control policies for haze in China and that detailed size-resolved information is needed to characterize the important sources of particulate matter in urban regions and better understand severe haze pollution.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wen-cai Zhang ◽  
Yan-ge Wang ◽  
Zheng-feng Zhu ◽  
Fang-qin Wu ◽  
Yu-dong Peng ◽  
...  

Objective. To investigate the role of CD4+CD25+T cells (Tregs) in protecting fine particulate matter (PM-) induced inflammatory responses, and its potential mechanisms.Methods. Human umbilical vein endothelial cells (HUVECs) were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2) of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25−T cells (Teff), or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined.Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), and inflammatory cytokines, such as interleukin (IL-) 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1) to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors.Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.


Sign in / Sign up

Export Citation Format

Share Document