scholarly journals Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions

2019 ◽  
Vol 12 (1) ◽  
pp. 237 ◽  
Author(s):  
Sinéad O’Keeffe ◽  
Daniela Thrän

Anaerobic digestion producing biogas is an important decentralized renewable energy technology used to mitigate climate change. It is dependent on local and regional feedstocks, which determine its sustainability. This has led to discussions on how to alter feedstock for biogas plants without compromising their GHG (Greenhouse gas) saving, one particular issue being the use of Maize silage (MS) as the dominant feedstock. To support this discussion, this paper presents an integrated life cycle assessment of energy crop cultivation for 425 biogas catchments in the region of Central Germany (CG). The simulations for the CG region showed that MS as an effective crop to mitigate GHG emissions per kilowatt hour (GHGculti) was context dependent. In some cases, GHGculti reductions were supported due to higher yields, and in other cases, this led to increased GHGculti. We show that the often-proposed strategy of substituting one crop for another needs to be adapted for strategies which take into account the crop mixtures fed into biogas plants and how they perform altogether, under the specific regional and locational conditions. Only in this way can the trade-offs for lower GHGculti be identified and managed.

2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>


Author(s):  
Albert Arhin

The mechanism of Reducing Emissions from Deforestation and Degradation plus conservation, sustainable forest management and enhancement of carbon stocks is emerging as one of the current efforts and actions being developed by the international climate change community to mitigate climate change. This chapter highlights the potentials as well as the challenges of this mechanism to reduce forest loss and improve the health and sustainability of the environment. Main potentials include its resolve to make trees worth more standing than cut, the transfer of funds to support conservation efforts and a focus on delivering social benefits. The main challenges include the less attention on unclear tenure and benefit-sharing framework; weak institutions and the complex historical, political and structural interests which have allowed powerful groups to expropriate the forest resources and trade-offs that may arise during implementation. It then outlines four broad areas where researchers can make contributions in national and local level policy-making and interventions related to REDD+.


2011 ◽  
Vol 87 (05) ◽  
pp. 625-635 ◽  
Author(s):  
Denise Golden ◽  
M.A. Smith ◽  
Stephen Colombo

Forests have significant potential to mitigate climate change. Canada has 30% of the world's boreal forests. The ratification of the Kyoto Protocol commoditized carbon (C) on an international scale. To achieve Canada's emission reduction targets and mitigate climate change, the potential of forest C offset projects and forest C trading is being evaluated. Carbon trading and forest C management have economic and policy implications and potential trade-offs in other forest management objectives. We discuss how forest C management and trading can contribute to global efforts for atmospheric greenhouse gas emissions reduction through either utilization and/or conservation strategies.


10.6036/9922 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 316-321
Author(s):  
IGNACIO DE BLAS ◽  
LUIS JAVIER MIGUEL GONZALEZ ◽  
CARLOS DE CASTRO CARRANZA

The climate change that is currently occurring is due to the increase in the concentration of greenhouse gases (GHG) in the atmosphere as a result of human activity. The large number of factors and variables that directly or indirectly affect GHG emissions, as well as the multiple and complex relationships between them, makes it difficult to make decisions on the best measures to be adopted to slow down or mitigate climate change and to analyze the consequences that each decision entails. This has led to the development of complex simulation models called Integrated Assessment Models (IAMs) or Energy-Economy-Environment Models (E3 models), with a particular focus on climate change. The development and use of these models to guide policy decisions on climate change has grown very significantly in recent years, as evidenced by the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper is a panoramic review of the main existing IAMs and analyzes their main characteristics. The paper focuses especially on the analysis of the limitations of the current IAMs, which should mark the future developments of these tools.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1227
Author(s):  
Guihun Jiang ◽  
Kashif Ameer ◽  
Honggyun Kim ◽  
Eun-Jung Lee ◽  
Karna Ramachandraiah ◽  
...  

The consequences of climate change are becoming increasingly discernible everywhere, and initiatives have been taken worldwide to mitigate climate change. In agriculture, particularly meat production from the livestock sector is known to contribute to greenhouse gas emissions (GHG) that drive climate change. Thus, to mitigate climate impact, strategies that include a shift in consumption patterns, technological advancements and reduction in food wastes/losses have been discussed. In this review, strategies that focus on meat consumption patterns are evaluated from the technological feasibility, environmental impact and consumer acceptance viewpoints. While plant-based substitutes have efficient nutrient conversion and lower GHG emissions, consumer perception, cost, and other trade-offs exist. Although cultured meat precludes the need of any animals and large land areas, its environmental impact is not clear and is contingent upon production systems and the achievement of decarbonization. Reducing wastes and the re-use of meat processing by-products have the potential to lower the environmental impact. Valuable proteins, heat, electricity and biofuels extracted from wastes and by-products not only reduce the disposal of wastes but also offset some GHG emissions. Perception related challenges that exist for all substitution strategies require specific consumer target marketing strategies. Policy measures such as taxation of meat products and subsidies for alternatives are also met with challenges, thereby requiring reforms or new policies.


2021 ◽  
Vol 5 ◽  
Author(s):  
Samuel Appiah Ofori ◽  
Samuel Jerry Cobbina ◽  
Samuel Obiri

The current and projected warming of the earth is unequivocal with humans playing a strong role as both perpetrators and victims. The warming on the African continent is projected to be greater than the global average with an increased average temperature of 3–6°C by the end of the century under a high Representative Concentration Pathway. In Africa, the Sub-Saharan region is identified as the most vulnerable to the changing climate due to its very low capacity to adapt to or mitigate climate change. While it is common to identify studies conducted to assess how climate change independently impacts water, land, or food resources, very limited studies have sought to address the interlinkages, synergies, and trade-offs existing between climate change, water, land, and food (WLF) resources as a system in Sub-Saharan Africa (SSA). The climate change and WLF security nexus, therefore, seeks to address this shortfall in literature and subsequently serve as a relevant source of information for decision-making and policy implementation concerning climate change mitigation and adaptation. In this study, 41 relevant studies were selected from Web of Science, Google Scholar, ResearchGate, and institutional websites. We provide information on the independent relationships between climate change and WLF resources, and further discuss the existing inter-linkages between climate change and the WLF security in SSA using the nexus approach, with recommendations on how decision making and policy implementations should be done using the climate change and WLF security nexus approach.


2020 ◽  
Author(s):  
Martin Dorber ◽  
Anders Arvesen ◽  
David Gernaat ◽  
Francesca Verones

<p>The Sustainable Development Goals (SDG) require increased hydropower electricity production to reach SDG 7. However, a balance between related positive synergies and negative trade-offs needs to be found. So far there has been a strong focus on the technical development potential (SDG 7), and the positive synergies of hydropower, for example in relation to SDG 13 (Climate change). However, hydropower can also cause, for instance, biodiversity impacts, leading to a negative biodiversity trade-off with SDG 6 (Clean water and sanitation) and SDG 15 (Life on land). Although conservation of biodiversity has been identified as a key parameter for sustainable development, global assessments accounting for site specific biodiversity trade-offs of hydropower sites are still lacking.</p><p>To fill this research gap, we performed the first global and reservoir explicit assessment of terrestrial and aquatic biodiversity impacts of 2000 possible future hydropower reservoirs. We adapted the latest spatially explicit impact assessment methods available from the field of life cycle assessment, with a high-resolution and location-specific technical assessment of future economic hydropower potentials (Gernaat et al., Nature Energy 2017). More specially we collected site-specific environmental information from geographic information system databases to quantify potential reservoir-specific, net land occupation, net water consumption and methane emissions. Subsequently, we quantified the related terrestrial and aquatic biodiversity impact in units of potentially disappeared fraction of species (PDF).</p><p>Our results show that future hydropower electricity production can have a spatially highly variable biodiversity impact (varying by orders of magnitude) which can interfere with SDG 6 and SDG 15. Furthermore, we show that careful selection of reservoirs on a macro level has a large potential to limit biodiversity impacts. Thus, sustainable hydropower development requires an assessment of potential biodiversity impacts.  This in turn means, that if mitigating climate change for SDG 13 is the main motivation for increased hydropower production, as it can score favorable in studies comparing GHG emissions, it is likely that potential biodiversity impacts are overlooked. However, in order to move towards overall sustainability, taking biodiversity impacts into account next to climate change and other impacts, is of utmost importance.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tanja Myllyviita ◽  
Sampo Soimakallio ◽  
Jáchym Judl ◽  
Jyri Seppälä

Abstract Background Replacing non-renewable materials and energy with wood offers a potential strategy to mitigate climate change if the net emissions of ecosystem and technosystem are reduced in a considered time period. Displacement factors (DFs) describe an emission reduction for a wood-based product or fuel which is used in place of a non-wood alternative. The aims of this review were to map and assess DFs from scientific literature and to provide findings on how to harmonise practices behind them and to support coherent application. Results Most of the reviewed DFs were positive, implying decreasing fossil GHG emissions in the technosystem. The vast majority of the reviewed DFs describe avoided fossil emissions either both in processing and use of wood or only in the latter when wood processing emissions were considered separately. Some of the reviewed DFs included emissions avoided in post-use of harvested wood products (HWPs). Changes in forest and product carbon stocks were not included in DFs except in a few single cases. However, in most of the reviewed studies they were considered separately in a consistent way along with DFs. DFs for wood energy, construction and material substitution were widely available, whereas DFs for packaging products, chemicals and textiles were scarce. More than half of DFs were calculated by the authors of the reviewed articles while the rest of them were adopted from other articles. Conclusions Most of the reviewed DFs describe the avoided fossil GHG emissions. These DFs may provide insights on the wood-based products with a potential to replace emissions intensive alternatives but they do not reveal the actual climate change mitigation effects of wood use. The way DFs should be applied and interpreted depends on what has been included in them. If the aim of DFs is to describe the overall climate effects of wood use, DFs should include all the relevant GHG flows, including changes in forest and HWP carbon stock and post-use of HWPs, however, based on this literature review this is not a common practice. DFs including only fossil emissions should be applied together with a coherent assessment of changes in forest and HWP carbon stocks, as was the case in most of the reviewed studies. To increase robustness and transparency and to decrease misuse, we recommend that system boundaries and other assumptions behind DFs should be clearly documented.


Trautbuck Project Uganda (TPU) is a registered local NGO reg: 11800 and later a social business enterprise, established in 2012, having constructed over 30 Biogas Plants in and outside Uganda as a consortium and or as a individual firm added to its experience, with an aim of improving health of grass root communities using an environmental friendly and sustainable approach. TPU addresses the most urgent and critical issues of our time as a movement of common cause and reconciliation using a multi sector approach combined with unifying values and principles.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7781
Author(s):  
Carlos Pretel ◽  
Pedro Linares

The estimation of the social cost of climate change is typically carried out with complex, difficult to interpret, integrated assessment models (IAMs). Instead, this paper presents a simple, tractable model with which to estimate the willingness to pay of societies against climate change. The model is based on an already comprehensive and intuitive one developed by Besley and Dixit, which has been modified by including a backstop technology (e.g., a renewable energy technology). This improved formulation allows for a more realistic representation of the climate change problem in that it is able to include the decoupling of economic growth and GHG emissions. The model allows us to understand the implications of different assumptions, such as the rate of growth of the economy, or the damages expected from climate change, on the willingness to pay against it. Our results show that, for a baseline scenario, the willingness to pay (WTP) is 0.52% of annual GDP, lower than that obtained by Besley and Dixit, which shows the significant benefits of developing competitive mitigation technologies. Our results also show the benefits of international collaboration, or of devoting more resources to R&D, as efficient ways to fight against climate change.


Sign in / Sign up

Export Citation Format

Share Document