scholarly journals Ecofibers for the Reinforcement of Cement Mortars for Coating Promoting the Circular Economy

2020 ◽  
Vol 12 (7) ◽  
pp. 2835 ◽  
Author(s):  
Carolina Piña Ramírez ◽  
Alejandra Vidales Barriguete ◽  
Julián García Muñoz ◽  
Mercedes del Río Merino ◽  
Patricia del Solar Serrano

Nowadays, nobody can deny that climate change is a reality and that the life cycle of buildings contributes greatly to that reality. Therefore, proposals such as the circular economy must be integrated into the construction sector. This article shows part of the results of a research project whose objective is to introduce circular economy criteria in building materials, seeking new uses for construction and demolition waste from buildings. In particular, this article analyses the possibility of replacing fibres currently used to reinforce cement mortars with recycled fibres. After consulting the bibliography, we can conclude that some studies analyse the behaviour of cement mortars reinforced with different types of fibres, but none has been found that analyses the behaviour of these mortars for the application of continuous coatings. For this purpose, a two-stage experimental plan is designed to test cement mortar samples with different types of fibres, recycled fibres and commercial fibres, taking into consideration the characteristics that these mortars have to comply to be applied as continuous coatings. Moreover, a detailed study about the porosity of these mortars and its influence on how the mortars behave with regard to compression, water vapour permeability and impermeability has been conducted. From the results obtained, it can be concluded that the mortars containing recycled fibres have very similar resistance, absorption and permeability values to those containing commercial fibres, so that they might be suitable for application as external coatings.

2021 ◽  
Vol 18 (4) ◽  
pp. 347-369
Author(s):  
Jonas Voorter ◽  
Christof Koolen

Abstract The construction sector plays a crucial role in the transition to a circular economy and a more sustainable society. With this objective in mind, Flanders – the Dutch speaking part of Belgium – makes use of a traceability procedure for construction and demolition waste in order to guarantee that value can be derived from downstream waste processing activities. This article takes this traceability procedure as a legal case study and examines if the use of blockchain technology could lead to even stronger supply chains, better data management, and, more generally, a smoother transition to circular practices in the construction sector.


2020 ◽  
Author(s):  
Michael Galetakis ◽  
Athanasia Soultana ◽  
Theodoros Daskalakis

<p>Waste concrete is the most predominant constituent material among construction and demolition waste. Recycling of this material could minimize landfilled waste and mineral resources depletion. This study investigates, in laboratory scale, the production of upgraded recycled concrete aggregates, suitable for the replacement of primary (crushed limestone sand) used in cement mortars, by means of selective crushing and autogenous grinding. These particle size reduction techniques, compared to traditional crushing/grinding, have the potential to remove the brittle cement paste from the aggregates, thus significantly improving their quality. The granulometry, the density, the water absorption (EN 13755) and the flow coefficient (EN 933-6) of the produced upgraded sand was determined and compared to crushed limestone sand. Subsequently, cement mortar specimens were manufactured using upgraded aggregates for total replacement of crushed limestone sand. Specimens were tested for their compressive and flexural strength (EN 196-1), density and water absorption. Results indicated that the upgraded recycled sand produced through the selective crushing and autogenous grinding processes had improved properties compared to the one produced by conventional crushing processes (flexural and compressive strength of cement mortar specimens were increased by 29% and 7%, respectively). However, the quality of the upgraded sand is lower than that of the primary crushed limestone. To further explore the issue, it is planned to investigate in more detail the process of autogenous grinding and to investigate the use of other selective aggregate-cement paste liberation technologies.</p>


2015 ◽  
Vol 727-728 ◽  
pp. 167-170 ◽  
Author(s):  
Chin Peow Woon ◽  
Poi Ngian Shek ◽  
Mahmood Md Tahir ◽  
Ahmad Beng Hong Kueh

For environmental protection and sustainable development, many research studies have been carried out on the utilization of waste materials in construction such as fly ash, mine tailings, slags, construction and demolition waste, wood sawdust, rice husk ash, crumb rubber and etc. In this study, two types of waste seashells; green mussel and cockle were tested experimentally to replace fine aggregate in cement mortar. The compressive strength of the cement mortar with seashells were compared with those of a control mortar that was made of a conventional river sand. The main parameter of this study was the proportion of ground seashells used as sand replacement (25%, 50%, 75% or 100% by weight). Incorporation of cockle in cement mortar resulted in higher compressive strength as compared to conventional mortar up to 110 percent. However, incorporation of green mussel resulted in decrement in compressive strength by 67 percent. The results indicate that ground seashells can be applied as a sand replacement in mortar mixes and may improve the compressive strength of rendering and plastering mortar.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 528
Author(s):  
Abbas Solouki ◽  
Giovanni Viscomi ◽  
Piergiorgio Tataranni ◽  
Cesare Sangiorgi

Every year, up to 3 billion tons of non-renewable natural aggregates are demanded by the construction sector and approximately 623 million tons of waste (mining and quarrying) was produced in 2018. Global efforts have been made to reduce the number of virgin aggregates used for construction and infrastructure sectors. According to the revised waste framework directive in Europe, recycling at least 70% of construction and demolition waste materials by 2020 was obligatory for all member states. Nonetheless, quarries must work at full capacity to keep up with the demands, which has made quarry/mining waste management an important aspect during the past decades. Amongst the various recycling methods, quarry waste can be included in cement mortar mixtures. Thus, the current research focuses on producing cement mortars by partially substituting natural sand with the waste silt obtained from the limestone aggregate production in S.A.P.A.B.A. s.r.l. (Italy). A Design of Experiments (DOE) method is proposed to define the optimum mix design, aiming to include waste silt in cement mortar mixtures without affecting the final performance. Three cement mortar beams were produced and tested for each of the 49 randomized mixtures defined by the DOE method. The obtained results validate the design approach and suggest the possibility of substituting up to 20% of natural sand with waste silt in cement mortar mixtures.


Author(s):  
Magnus Sparrevik ◽  
Luitzen de Boer ◽  
Ottar Michelsen ◽  
Christofer Skaar ◽  
Haley Knudson ◽  
...  

AbstractThe construction sector is progressively becoming more circular by reducing waste, re-using building materials and adopting regenerative solutions for energy production and biodiversity protection. The implications of circularity on construction activities are complex and require the careful evaluation of impacts to select the appropriate path forward. Evaluations of circular solutions and their environmental effectiveness are often performed based on various types of life cycle-based impact assessments. This paper uses systemic thinking to map and evaluate different impact assessment methodologies and their implications for a shift to more circular solutions. The following systemic levels are used to group the methodologies: product (material life cycle declarations and building assessments), organisation (certification and management schemes) and system (policies, standards and regulations). The results confirm that circular economy is integrated at all levels. However, development and structure are not coordinated or governed unidirectionally, but rather occur simultaneously at different levels. This recursive structure is positive if the methods are applied in the correct context, thus providing both autonomy and cohesion in decision making. Methods at lower systemic levels may then improve production processes and stimulate the market to create circular and innovative building solutions, whereas methods at higher systemic levels can be used, for example, by real estate builders, trade organisations and governments to create incentives for circular development and innovation in a broader perspective. Use of the performance methods correctly within an actor network is therefore crucial for successful and effective implementation of circular economy in the construction sector.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2970 ◽  
Author(s):  
Clarence P. Ginga ◽  
Jason Maximino C. Ongpeng ◽  
Ma. Klarissa M. Daly

Construction and demolition waste (CDW) accounts for at least 30% of the total solid waste produced around the world. At around 924 million tons in the European Union in 2016 and 2.36 billion tons in China in 2018, the amount is expected to increase over the next few years. Dumping these wastes in sanitary landfills has always been the traditional approach to waste management but this will not be feasible in the years to come. To significantly reduce or eliminate the amount of CDW being dumped, circular economy is a possible solution to the increasing amounts of CDW. Circular economy is an economic system based on business models which replaces the end-of-life concept with reducing, reusing, recycling, and recovering materials. This paper discusses circular economy (CE) frameworks—specifically material recovery and production highlighting the reuse and recycling of CDW and reprocessing into new construction applications. Likewise, a literature review into recent studies of reuse and recycling of CDW and its feasibility is also discussed to possibly prove the effectivity of CE in reducing CDW. Findings such as effectivity of recycling CDW into new construction applications and its limitations in effective usage are discussed and research gaps such as reuse of construction materials are also undertaken. CE and recycling were also found to be emerging topics. Observed trends in published articles as well as the use of latent Dirichlet allocation in creating topic models have shown a rising awareness and increasing research in CE which focuses on recycling and reusing CDW.


Respuestas ◽  
2017 ◽  
Vol 22 (1) ◽  
pp. 6 ◽  
Author(s):  
Alejandra Sarabia-Guarin ◽  
Jorge Sánchez-Molina ◽  
Juan Carlos Leyva-Díaz

Antecedentes: El sector de la construcción es uno de los sectores económicos en Colombia con mayor crecimiento, generando grandes cantidades de residuos como producto del proceso de construcción, y/o demolición, o en su defecto en la fabricación de los materiales de construcción. Objetivo: facilitar el acceso a información académicocientífica actualizada sobre reciclaje de residuos industriales y su aplicación en la fabricación de materiales de construcción. Así mismo se emplea el término de economía circular, el cual hace referencia a la integración de las actividades de reducción (consumo de energía y residuos), reutilización y recuperación durante la producción, el intercambio y consumo. Conclusión: además de reducir la contaminación generada por los residuos de los sectores productivos, con el aprovechamiento de los subproductos ha sido posible mejorar ciertas propiedades tecnológicas de estos materiales de construcción.Palabras Clave: economía circular, materiales de construcción, nutriente tecnológico, reciclaje, residuos industriales.AbstractBackground: The construction sector is one of the economic sectors with the highest growth in Colombia, generating large amounts of waste as a result of the construction process, and / or demolition, or otherwise in the building material manufacturing. Objective: to facilitate the access to updated academic-scientific information on recycling of industrial waste and its application for the building material manufacturing. Moreover, the concept of circular economy is used, which refers to the integration of the reduction activities (energy consumption and waste),reuse and recycling during the production, exchange and consumption. Conclusion: in addition to the reduction of the pollution generated by waste from the productive sectors, certain technological properties of these building materials have been improved through the use of waste. Keywords: circular economy, building materials, technological nutrient, recycling, industrial waste.


Author(s):  
Vitali Chulkov ◽  
Bakhruz Nazirov

In the process of urbanization of large cities in different countries, there are similar problems of reorganization, involving the demolition of physically and morally obsolete buildings and structures, as well as the subsequent construction reorganization of the territories vacated or re-cut to the city. In the process of demolition of obsolete buildings and structures, as well as the construction of new buildings, inevitably significant amounts of waste and construction debris arise that should be recycled as much as possible into secondary building materials (to carry out the so-called «recycling» of waste). Types of construction reorganization of urban areas are divided into traditional, widely known and standardized (repair, reconstruction, restoration), and innovative, arising in the processes of reorganization of society. Among the innovative types of construction reorganization, renovation is currently the most relevant, meeting the need to renovate the dilapidated housing stock of cities. The article discusses the main types of construction waste generated during demolition and new construction, as well as the technologies used for recycling these wastes during the renovation of territories and pavements of large cities.


China's industries are rapidly growing, and with that generation of waste is also increasing. Associated environmental concerns over construction and demolition waste, industrial waste such as fly ash generated by thermal power plants need to be utilized in some form. Autoclave aerated concrete is a lightweight material that can be used as an alternative building material; it is widely composed of raw materials such as cement, quicklime, sand, gypsum, and an aerating agent like aluminum powder. In this study, 40% waste will be utilized, Construction waste (5%,10%,15%....40%) and Fly ash (35%,30%,25….0%)respectively, keeping the aerating agent constant at 0.06% that is aluminum powder. The compressive strength of the material will be checked after autoclaving at 2000 temperature and 1Mpa Pressure for 6 hours. The study aims to design an autoclave aerated concrete material and to recycle the waste generated by various industries mainly from the construction sector.


Sign in / Sign up

Export Citation Format

Share Document