scholarly journals Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2970 ◽  
Author(s):  
Clarence P. Ginga ◽  
Jason Maximino C. Ongpeng ◽  
Ma. Klarissa M. Daly

Construction and demolition waste (CDW) accounts for at least 30% of the total solid waste produced around the world. At around 924 million tons in the European Union in 2016 and 2.36 billion tons in China in 2018, the amount is expected to increase over the next few years. Dumping these wastes in sanitary landfills has always been the traditional approach to waste management but this will not be feasible in the years to come. To significantly reduce or eliminate the amount of CDW being dumped, circular economy is a possible solution to the increasing amounts of CDW. Circular economy is an economic system based on business models which replaces the end-of-life concept with reducing, reusing, recycling, and recovering materials. This paper discusses circular economy (CE) frameworks—specifically material recovery and production highlighting the reuse and recycling of CDW and reprocessing into new construction applications. Likewise, a literature review into recent studies of reuse and recycling of CDW and its feasibility is also discussed to possibly prove the effectivity of CE in reducing CDW. Findings such as effectivity of recycling CDW into new construction applications and its limitations in effective usage are discussed and research gaps such as reuse of construction materials are also undertaken. CE and recycling were also found to be emerging topics. Observed trends in published articles as well as the use of latent Dirichlet allocation in creating topic models have shown a rising awareness and increasing research in CE which focuses on recycling and reusing CDW.

Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 61
Author(s):  
Vasilios Papastamoulis ◽  
Kerry London ◽  
Yingbin Feng ◽  
Peng Zhang ◽  
Robert Crocker ◽  
...  

Traditionally, construction and demolition waste (CDW) materials have been considered to be unwanted, surplus, or wastage materials or materials with zero value. Such a conceptualisation only embraces a negative aspect, which underpins the disposal of reusable and recyclable CDW materials in landfills, thus damaging the circular economy and the environment. The scope of this research was to conceptualise the circular economy potential of non-hazardous construction and demolition waste, which can be used as a resource for advancing the circular economy and sustainability in the built environment. Thus, the abbreviation ‘CEPCDR’ is used for this purpose. The study employs an integrative literature review to understand in depth whether the rationale in the existing CDW definitions advocates for the circular economy. Instead, the literature showed that the current definitions mainly support quantitative, economic, or classification needs, respectively. That is because they lack consideration of the dynamic nature of CDW materials, which embraces the spatial and temporal dimensions. The former involves the geographic context in which the CDW phenomenon eventuates, while the latter concerns the lifecycle of materials. This study contributes to the body of knowledge by conceptualising the CEPCDR using a holistic approach that includes five dimensions: the social, economic, environmental, spatial, and temporal perspectives. Furthermore, the study seeks to drive future research in measuring the CEPCDR.


2021 ◽  
Vol 11 (2) ◽  
pp. 87-93
Author(s):  
Jaya Surya R ◽  
Dr. Kranti Kumar M

In the world, around 30% of the total solid waste is construction and demolition waste. In India, as per the building material promotion council, 150 million tonnes of C&D waste is generated every year. In the total C&D waste, only one percent which is 6500 tonnes per day is recycled, mentioned in the report released by the Centre for science and environment, New Delhi. There is a rising gap between increasing demand and limited sources in the construction sector of India. It leads to market instability and environmental harm. Linear business model is most commonly used in present times. It is one of the main reasons for the increase of C&D wastes. This linear approach (source-commodity-waste) encourages the one-use of products. It leads to excessive dumping of C&D wastes in landfills, which is not a sustainable practice. Circular business models leads to closed-loop approach (source-commodity-waste-new source). The adoption of circular business models in C&D waste management is the possible solution for the decreasing resources. This study aims to discuss the implementation of various approaches including conceptual models, methods, and tools of circular business models in the C&D waste management in India, which leads to the circular economy and sustainable development. Through the study of recent literature sources, various data related to circular business models, circular economy are collected. Data analysis will be done using the literature review. This research will highlight the socio-economic, environmental benefits, improvements, and the applicability of circular business models in the C&D waste management of India. This paper is concluded that framing strict circular economy policies for India would encourage the implementation of CBM in C&D waste management which reduces the need for fresh resources and ensures sustainable development.


2019 ◽  
Author(s):  
A.P.K.D. Mendis ◽  
◽  
A. Samaraweera ◽  
D.M.G.B.T. Kumarasiri ◽  
D. Rajini ◽  
...  

2020 ◽  
Vol 6 (9) ◽  
pp. 73169-73180
Author(s):  
Kelly Patrícia Torres Vieira Brasileiro ◽  
Bacus de Oliveira Nahime ◽  
Michell Macedo Alves ◽  
Pâmela Millena Kunan ◽  
Vitor Alvares ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 1899
Author(s):  
Fabiana Gatto ◽  
Ilaria Re

Reducing the environmental pressure along the products life cycle, increasing efficiency in the consumption of resources and use of renewable raw materials, and shifting the economic system toward a circular and a climate-neutral model represent the heart of the current macro-trends of the European Union (EU) policy agendas. The circular economy and bioeconomy concepts introduced in the EU’s Circular Economy Action Plan and the Bioeconomy Strategy support innovation in rethinking economic systems focusing on market uptaking of greener solutions based on less-intensive resource consumption. In recent decades, industrial research has devoted enormous investments to demonstrate sustainable circular bio-based business models capable of overcoming the “Valley of Death” through alternative strategic orientations of “technological-push” and “market-pull”. The study highlights industrial research’s evolution on bio-based circular business model validation, trends, and topics with particular attention to the empowering capacity of start-ups and small and medium-sized enterprises (SMEs) to close the loops in renewable biological use and reduce dependence on fossil fuels. The research methodology involves a bibliographic search based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach and the European Innovation Council (EIC) Accelerator Data Hub investigation to understand SMEs’ key success factors and start-ups of the circular bioeconomy sector. Eco and bio-based materials, nutraceuticals, and microalgae represent the most sustainable industry applications, leading to circular bioeconomy business models’ future perspective.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Beatriz Fraga-De Cal ◽  
Antonio Garrido-Marijuan ◽  
Olaia Eguiarte ◽  
Beñat Arregi ◽  
Ander Romero-Amorrortu ◽  
...  

Prefabricated solutions incorporating thermal insulation are increasingly adopted as an energy conservation measure for building renovation. The InnoWEE European project developed three technologies from Construction and Demolition Waste (CDW) materials through a manufacturing process that supports the circular economy strategy of the European Union. Two of them consisted of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS) and a ventilated façade. This study evaluates their thermal performance by means of monitoring data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation models enabling the reliable prediction of energy savings in different climates and use scenarios. Results showed a reduction in energy demand for all demo buildings, with annual energy savings up to 25% after placing the novel insulation solutions. However, savings are highly dependent on weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric assessment is performed to assess the impact of insulation thickness through an energy performance prediction and a cash flow analysis.


2021 ◽  
pp. 0734242X2110291
Author(s):  
Navarro Ferronato ◽  
Gabriela Edith Guisbert Lizarazu ◽  
Marcelo Antonio Gorritty Portillo ◽  
Luca Moresco ◽  
Fabio Conti ◽  
...  

Construction and demolition waste (CDW) management in developing countries is a global concern. The analysis of scenarios and the implementation of life cycle assessment (LCA) support decision-makers in introducing integrated CDW management systems. This paper introduces the application of an LCA in La Paz (Bolivia), where CDW is mainly dumped in open areas. The aim of the research is to evaluate the benefits of inert CDW recycling in function of the selective collection rate, defined as the amount of waste (%wt.) sorted at the source in relation to the total waste amount produced, and the distances from the CDW generation to the material recycling facility. The outcomes of the research suggest that increasing the selective collection rates (5% to 99%) spread the importance of transportation distances planning since it affects the magnitude of the environmental impacts (1.05 tCO2-eq to 20.7 tCO2-eq per km traveled). Transportation limits have been found to be lower than about 40 km in order to make recycling beneficial for all environmental impacts and for all selective collection rate, with the eutrophication potential as the limiting indicator. The theoretical analysis suggests implementing LCA with primary data and involving statistics related to the transportation of virgin materials avoided thanks to recycling. The outcomes of the research support the implementation of CDW recycling in developing countries since it has been found that material recovery is always beneficial.


2021 ◽  
Vol 18 (4) ◽  
pp. 347-369
Author(s):  
Jonas Voorter ◽  
Christof Koolen

Abstract The construction sector plays a crucial role in the transition to a circular economy and a more sustainable society. With this objective in mind, Flanders – the Dutch speaking part of Belgium – makes use of a traceability procedure for construction and demolition waste in order to guarantee that value can be derived from downstream waste processing activities. This article takes this traceability procedure as a legal case study and examines if the use of blockchain technology could lead to even stronger supply chains, better data management, and, more generally, a smoother transition to circular practices in the construction sector.


Sign in / Sign up

Export Citation Format

Share Document