scholarly journals Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh

2020 ◽  
Vol 12 (7) ◽  
pp. 2880 ◽  
Author(s):  
Hasan Masrur ◽  
Harun Or Rashid Howlader ◽  
Mohammed Elsayed Lotfy ◽  
Kaisar R. Khan ◽  
Josep M. Guerrero ◽  
...  

Following a rise in population, load demand is increasing even in the remote areas and islands of Bangladesh. Being an island that is also far from the mainland of Bangladesh, St. Martin’s is in need of electricity. As it has ample renewable energy resources, a renewable energy-based microgrid system seems to be the ultimate solution, considering the ever-increasing price of diesel fuel. This study proposes a microgrid system and tests its technical and economic feasibility in that area. All possible configurations have been simulated to try and find the optimal system for the island, which would be eco-friendly and economical with and without considering renewable energy options. The existing power supply configuration has also been compared to the best system after analyzing and investigating all technical and economic feasibility. Sensitivity and risk analysis between different cases provide added value to this study. The results show that the current diesel-based system is not viable for the island’s people, but rather a heavy burden to them due to the high cost of per unit electricity and the net present cost. In contrast, a PV /Wind/Diesel/Battery hybrid microgrid appeared to be the most feasible system. The proposed system is found to be around 1.5 times and 28% inexpensive considering the net present cost and cost of energy, respectively, with a high (56%) share of renewable energy which reduces 23% carbon dioxide.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2109 ◽  
Author(s):  
Zhe Lv ◽  
Zengping Wang ◽  
Wanyu Xu

In the context of global warming and energy shortage, this paper discusses the techno-economic feasibility of a residential household based on 100% renewable energy in China. The energy storage life, equipment’s residual value, system shortage capacity and atmospheric pollution emissions were considered comprehensively. A life cycle evaluation model based on the net present value (NPV) was built. Taking a real household as an example, the levelised cost of energy (LCOE) is 0.146 $/kW and the unmet load is only 0.86%, which has a big economic advantage when compared with diesel generators. If grid-connected, the system can bring $8079 in 25 years when the LCOE is −0.062 $/kW. The effects of the allowed shortage capacity, renewable energy resources, battery price and the allowed depth of discharge on the economy and energy structure were examined. For example, due to the features of the residential load, the influence of wind resource richness is more obvious than the irradiance. The maximum depth of discharge has less impact on the economy. This paper verifies the techno-economic rationality and feasibility of 100% renewable energy for a household.


2021 ◽  
Vol 16 ◽  
pp. 67-77
Author(s):  
T. A. Boghdady ◽  
Ali J. Alamer ◽  
Mina M. Yousef ◽  
Ahmed M. Elshafee ◽  
M. A. Mostafa Hassan ◽  
...  

The main goal of this work is to find economical alternative energy supply solution for poultry industry in Egypt. By studying the economic feasibility of using hybrid renewable energy resources as main source of power for existing poultry farm in Egypt to reduce existing operational cost of energy and add resilience and reliability dimensions for the operation of poultry farm in rural locations. In addition to reducing the environmental impact of using poultry litter in its fundamental form. This hybrid system connected to grid is used in the company to avoid instability problem in which the company suffered when they applied biomass energy source as main power source to their farm in Lebanon. The grid will be used as energy storage during the excess energy production form the hybrid system and to add some resilience and reliability dimensions to the hybrid system to prevent instability to the farm ‘s grid due to the high penetration of renewable energy. The economic feasibility is evaluated of this configuration using HOMER versus different configurations and sizes for these systems including the existing situation of depending only on grid as main source of energy. The results showed that the best configuration is 400 kW biomass generator, and 500 kW PV plant will satisfy the average demanded load of 9660 kWh daily with using the grid as backup energy source. The cost of energy for this configuration will be 0.0894 $/kWh which is lower than continuing existing situation depending on the grid as main source of power in which its Cost of Energy (COE) will reach during the lifetime of the project to 0.184 $/kWh due to the increase in COE in Egypt by 8%.


2021 ◽  
Vol 10 (5) ◽  
pp. 2396-2404
Author(s):  
Syafii Syafii ◽  
Wati Wati ◽  
Rahmad Fahreza

This paper presents a techno-economic analysis and environment assessment of hybrid photovoltaic (PV), wind turbine (WT), and diesel genset (DG) with pumped hydro storage (PHS) for a rural microgrid system. The analysis is carried out for a case study with Mentawai community load demand of 165.44 kWh/day at a peak load of 20.46 kW. The Homer simulation results show that there are eight feasible configurations, which the optimal hybrid system configuration to supply community load is the configuration with PV/DG/PHS. An optimal system has been achieved for the lowest NPC of Indonesian rupiah (IDR) 3,00 B consist of 15 kWp PV modules, 1 unit of PHS and a solar inverter with a size 25 kW. The net present cost and payback period are in accordance with criteria for the economic feasibility analysis method of a project. However, the cost of energy is greater than the electrical utility tariff, but this value can be considered for applications in the remote island area. Therefore, the project still feasible to be implemented. Since the renewable fraction of the system is increased hence this proposed system will have the lowest carbon emission.


2021 ◽  
Vol 13 (1) ◽  
pp. 396
Author(s):  
Norasikin Ahmad Ludin ◽  
Nurfarhana Alyssa Ahmad Affandi ◽  
Kathleen Purvis-Roberts ◽  
Azah Ahmad ◽  
Mohd Adib Ibrahim ◽  
...  

Sustainability has been greatly impacted by the reality of budgets and available resources as a targeted range of carbon emission reduction greatly increases due to climate change. This study analyses the technical and economic feasibility for three types of solar photovoltaic (PV) renewable energy (RE) systems; (i) solar stand-alone, a non-grid-connected building rooftop-mounted structure, (ii) solar rooftop, a grid-connected building rooftop-mounted structure, (iii) solar farm, a grid-connected land-mounted structure in three tropical climate regions. Technical scientific and economic tools, including life cycle assessment (LCA) and life cycle cost assessment (LCCA) with an integrated framework from a Malaysian case study were applied to similar climatic regions, Thailand, and Indonesia. The short-term, future scaled-up scenario was defined using a proxy technology and estimated data. Environmental locations for this scenario were identified, the environmental impacts were compared, and the techno-economic output were analysed. The scope of this study is cradle-to-grave. Levelised cost of energy (LCOE) was greatly affected due to PV performance degradation rate, especially the critical shading issues for large-scale installations. Despite the land use impact, increased CO2 emissions accumulate over time with regard to energy mix of the country, which requires the need for long-term procurement of both carbon and investment return. With regards to profitably, grid-connected roof-mounted systems achieve the lowest LCOE as compared to other types of installation, ranging from 0.0491 USD/kWh to 0.0605 USD/kWh under a 6% discounted rate. A simple payback (SPB) time between 7–10 years on average depends on annual power generated by the system with estimated energy payback of 0.40–0.55 years for common polycrystalline photovoltaic technology. Thus, maintaining the whole system by ensuring a low degradation rate of 0.2% over a long period of time is essential to generate benefits for both investors and the environment. Emerging technologies are progressing at an exponential rate in order to fill the gap of establishing renewable energy as an attractive business plan. Life cycle assessment is considered an excellent tool to assess the environmental impact of renewable energy.


TEM Journal ◽  
2021 ◽  
pp. 2001-2006
Author(s):  
Syafii Syafii ◽  
Pinto Anugrah ◽  
Heru Dibyo Laksono ◽  
Herris Yamashika

This paper presents the economic feasibility of hybrid microgrid power system for three remote islands of Sumatra, Indonesia. The microgrid system simulated and analysed using Homer Pro software. Optimization results showed that the combination of photovoltaic (PV), diesel generation (G) and batteries (Batt) for microgrid power system in Mandeh and Lagundri Island area were the most economical configuration. Meanwhile, for Mentawai area, the combination of PV, Wind Turbine (WT), G, Batt was the most optimal since it has higher wind speed then the other two areas. The Mandeh area has the highest solar radiation compared to the other two areas, resulting in the lowest CoE of $0.096/kWh as well as the lowest investment and operational costs. For the fixed PV 100 kW scenario, the optimal configuration is obtained with 86 kW supplied by WT for the Lagundri location, and 67 kW supplied by WT for the Mentawai area, while the WT installation area is not recommended for Mandeh location. The power management analysis showed that the average and patterns of weather parameters including solar radiation and wind speed effect both PV and Wind electrical power production.


2018 ◽  
Vol 8 (10) ◽  
pp. 1733
Author(s):  
Eunil Park ◽  
Angel del Pobil

Since the importance and effects of national energy policies, plans, and roadmaps were presented in South Korea, the role of renewable energy resources has received great attention. Moreover, as there is significant reasoning for reducing and minimizing nuclear and fossil fuel usage in South Korean national energy plans, several academic scholars and implementers have expended significant effort to present the potential and feasibility of renewable energy resources in South Korea. This study contributes to these efforts by presenting potential sustainable configurations of renewable energy production facilities for a public building in South Korea. Based on economic, environmental, and technical information as well as the presented simulation results, it proposes an environmentally friendly renewable energy production facility configuration that consists of photovoltaic arrays, battery units, and a converter. Subsidies for installing and renovating such facilities are also considered. The potential configuration indicates $0.464 as the cost of energy, 100% of which is renewable. Potential limitations and future research areas are suggested based on the results of these simulations.


2015 ◽  
Vol 4 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Qais H. Alsafasfeh

Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.


Author(s):  
Andy Walker

An analytical approach is often taken to predict the performance of renewable energy systems at a site, but an analytic approach requires detailed information on the system to be modeled that is better determined during schematic design than guessed-at during pre-design. This paper describes a heuristic approach to identify and prioritize renewable energy project opportunities before detailed system information is available. The method determines the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory’s (NREL) capabilities in: characterizing of the empirical cost and performance of technologies; geographic information systems (GIS) resource assessment; and life-cycle cost analysis. For each technology, simple heuristic algorithms relate renewable energy resources at a site to annual energy delivery with coefficients that are determined empirically. Initial cost and operation and maintenance (O&M) cost also use empirical data. Economic performance is then calculated with a site’s utility rates and incentives. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes lifecycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study. Case studies include industrial sites, military bases, and civic buildings.


Sign in / Sign up

Export Citation Format

Share Document