scholarly journals On the Unbalanced Atmospheric Environmental Performance of Major Cities in China

2020 ◽  
Vol 12 (13) ◽  
pp. 5391
Author(s):  
Yongrok Choi ◽  
Fan Yang ◽  
Hyoungsuk Lee

As the largest emitter of CO2, China has also serious air pollution issues. Is it possible to catch these two rabbits under heterogenetic conditions of urbanization? To answer this, this study examines atmospheric environmental performance (SO2, NOx, and PMs) of 30 major cities in China using streaming data from 2011 to 2017. A non-radial SBM-DEA approach is adopted with a meta-frontier model to evaluate regional heterogeneity in atmospheric environmental management. Our results suggest that pollution prevention and regulation policies encouraged synergic development of most cities in the economy and atmospheric environment. On average, atmospheric environmental efficiency of the cities improved from 0.556 to 0.691. However, significantly unbalanced development exists in the regions, requiring customized policies. Eastern cities achieved continuing improvement owing to stringent air pollutant emission policies. Central cities showed a strong improvement but lacked momentum after they achieved certain targets. Western cities lagged behind in the studying period due to both technology gap as well as weak regulation. Furthermore, we identify heterogeneous paths for inefficient cities to enhance their performance using benchmark information. Economically developed eastern cities, such as Beijing, Fuzhou, are facing an over-supply issue. Reshaping their economic structure may be necessary to attain better environmental performance. Central cities face diversified issues. The emphasis of different cities may vary from stringent emission policies to proactive supply-side transition to achieve strong atmospheric management performance. For under-developed cities, preferential policies for investment and tax incentives may be needed to improve their production scale for higher efficiency.

2017 ◽  
Author(s):  
Lei Zhang ◽  
Tianliang Zhao ◽  
Sunling Gong ◽  
Shaofei Kong ◽  
Lili Tang ◽  
...  

Abstract. Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting Model with Chemistry (WRF-Chem), two simulations were executed to assess the atmospheric environmental change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that (1) compared to the power emissions of MEIC, PM2.5, PM10, SO2 and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs were higher in the UEIPP, reflecting a large discrepancy in the power emissions over East China; (2) In accordance with the changes of UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC and CO, whose concentrations in atmosphere are highly dependent on emission changes. (3) Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced, reflecting by increased oxidizing agents, e.g. O3 and OH, thus directly strengthened the chemical production from SO2 and NOx to sulfate and nitrate, which offset the reduction of primary PM2.5 emissions especially in the haze days. This study indicated the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with the implications on air quality and environmental changes.


2021 ◽  
Vol 237 ◽  
pp. 01037
Author(s):  
Haizhen Zhang ◽  
Jiang Wei

During the epidemic period, Urumqi has been sealed off from the city’s management, just as “suspended” state.From an environmental point of view, the reduction of energy consumption during the closure of the city can be considered as an energy control to study the resulting reduction of atmospheric pollutant concentration changes.In this paper, the monitoring data of air pollutant concentration in the same period of city closure and normal years are compared, and the results show that the air pollutant concentration has decreased in different degrees during the period of city closure.The largest decrease was44.66% for NO2, -40.13% for CO, -36.44% for PM2.5, and the smallest was-2.06% for SO2.Multivariate analysis of variance showed that energy control had a significant effect on the concentration of pollutants during the city closure, for example NO2 (F=128.96, Sig.=0.000), PM10 (F=29.58, Sig=0.000), PM2.5 (F=13.98, Sig.=0.000), CO(F=46.34;Sig.=0.000). Through the analysis of the data, it can be concluded that the air quality of Urumqi in winter is poor and the concentration of pollutants is high. The energy control during the closing period played a positive role in pollutant emission reduction and effectively improved the quality of atmospheric environment.


2021 ◽  
Vol 55 (8) ◽  
pp. 4483-4493
Author(s):  
Xinlei Liu ◽  
Guofeng Shen ◽  
Laiguo Chen ◽  
Zhe Qian ◽  
Ningning Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 431
Author(s):  
Jae-In Lee ◽  
Eun-Ji Cho ◽  
Fritz Ndumbe Lyonga ◽  
Chang-Hee Lee ◽  
Sue-Yun Hwang ◽  
...  

A mechanized thermo-chemical treatment system was developed to treat the undecomposed carcass and remediate livestock burial sites. Animal carcasses were thus processed via crushing, mixing, and treatment with quicklime treatment, heat treatment (200–500 °C), and mixing with sawdust. The machinery was applied to two sites where 16,000 chickens and 418 pigs had previously been buried in fiber-reinforced plastic storage bins. No dioxins were detected in the gas discharged during processing, and the concentration of total volatile organic compound, toluene, ethylbenzene, xylene, and styrene were 430.3, 139.0, 18.3, 21.4, and 10.4 μg/m3, respectively, which were below the air pollutant emission standards issued by the Korean Ministry of Environment. Korean standards stipulating the use of treated carcasses as compost (C, N, and P content, heavy metal concentration, Escherichia coli, and Salmonella) were met, but the germination index value was less than 70, not satisfying the criteria. Plant height, leaf length, leaf width, and dry weight of lettuce grown in soil amended with treated carcass product were significantly lower than those grown in low nutrient soil due to the poor germination index of the treated carcass. These results indicate that a composting process is required before the use of the treated carcass as a fertilizer. The addition of zeolite retarded the elution of ammonia from the carcasses and its efficiency was about 87.9%. It is expected that the mechanized thermo-chemical treatment process developed in this study could replace other technologies for the remediation of livestock burial sites.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


2013 ◽  
Vol 8 (4) ◽  
pp. 462-473
Author(s):  
X.Y. Zhao ◽  
S.Y. Cheng ◽  
J.B. Li ◽  
X.R. Guo ◽  
H.Y. Wang

Author(s):  
Xiliang Hong ◽  
Jianhong Chen ◽  
Deren Sheng ◽  
Wei Li

Owing to the growing environmental concerns, super-critical and ultra-supercritical coal-fired power plants dominate the electricity generation with the demand of near-zero air pollutant emission in China. Therefore, it is highly expected to assess the environmental impact and optimize the design at global and local levels. Exergoenvironmental analysis is a valid approach to investigate the formation of environmental impacts (EIs) associated with energy conversion systems at the component level. It generates information crucial for designing systems with a lower overall environmental impact, based on life cycle assessment (LCA) and exergy analysis. A 600 MW supercritical coal-fired system with and without dust, SO2 and NOx mitigation controls was analyzed. Heat transfer in the boiler, condenser (CND), low pressure cylinder (LP), air preheater (APH) show high potential to decrease the environmental impact due to high exergy destructions. The deaerator (DEA), induced draft fan (IDF), forced draft fan (FDF) should be focussed on construction design and manufacturing optimization. Purification units reveal high benefit for reducing EI produced by coal combustion, but there is a large space for the EI saving for it. The specific EI of electricity in China is much greater than European.


Sign in / Sign up

Export Citation Format

Share Document