scholarly journals A Novel Nitrogen Removal Technology Pre-Treating Chicken Manure, Prior to Anaerobic Digestion

2020 ◽  
Vol 12 (18) ◽  
pp. 7463
Author(s):  
Marie E. Kirby ◽  
Muhammad W. Mirza ◽  
James Davies ◽  
Shane Ward ◽  
Michael K. Theodorou

Chicken manure is an agricultural by-product that is a problematic feedstock for anaerobic digestion due to its high nitrogen content inhibiting methane yields. This research examines a novel pilot-scale method of ammonia stripping, the nitrogen recovery process (NRP) developed by Alchemy Utilities Ltd. The NRP was designed to remove and recover nitrogen from chicken manure and two different operating conditions were examined. Both operating conditions demonstrated successful nitrogen removal and recovery. The biochemical methane potential assays were used to compare the digestibility of the NRP-treated chicken manures to that of a fresh chicken manure control. Overall, the biochemical methane potential assays demonstrated that some NRP-treated chicken manure treatments produced significantly more methane compared to untreated manure, with no inhibition occurring in relation to ammonium. However, some of the NRP-treated chicken manures produced similar or lower methane yields compared to fresh chicken manure. The NRP requires further development to improve the efficiency of the pilot-scale unit for commercial-scale operation and longer-term continuous anaerobic digestion trials are required to determine longer-term methane yield and ammonium inhibition effects. However, these initial results clearly demonstrate the technology’s potential and novel application for decentralised, on-farm nitrogen recovery and subsequent anaerobic digestion of chicken manure.

2013 ◽  
Vol 827 ◽  
pp. 84-90 ◽  
Author(s):  
Maurizio Carlini ◽  
Sonia Castellucci ◽  
Silvia Cocchi

One of the most promising processes to exploit Solid Olive-Mill Waste (SOMW) for energy production is anaerobic digestion. An experimental study has been carried out on SOMW and inoculum, consisting of Cattle Slurry Digested (CSD) and coming from an anaerobic digestion plant. A substrate with an optimal supply ratio equal to 2:1 has been investigated in a reactor at 37°C by analysing the biogas production. The Biochemical Methane Potential (BMP) test has been carried out, monitoring pH, biogas production (amount and composition). According to the tests results, SOMWs needed to be diluted and inoculated, moreover the pH control is foundamental in order to obtain a significant biogas production. Anaerobic digestion plant of SOMW should be promoted in Mediterranean countries as an environmentally sound option for waste management and energy production, since olive mills are very widespread agro-industries in this area.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


Author(s):  
Supattra Maneein ◽  
John J. Milledge ◽  
Birthe V. Nielsen

AbstractSargassum muticum is a brown seaweed which is invasive to Europe and currently treated as waste. The use of S. muticum for biofuel production by anaerobic digestion (AD) is limited by low methane (CH4) yields. This study compares the biochemical methane potential (BMP) of S. muticum treated in three different approaches: aqueous methanol (70% MeOH) treated, washed, and untreated. Aqueous MeOH treatment of spring-harvested S. muticum was found to increase CH4 production potential by almost 50% relative to the untreated biomass. The MeOH treatment possibly extracts AD inhibitors which could be high-value compounds for use in the pharmaceutical industry, showing potential for the development of a biorefinery approach; ultimately exploiting this invasive seaweed species.


2015 ◽  
Vol 71 (10) ◽  
pp. 1500-1506 ◽  
Author(s):  
P. Moretti ◽  
J. M. Choubert ◽  
J. P. Canler ◽  
O. Petrimaux ◽  
P. Buffiere ◽  
...  

The objective of this study is to improve knowledge on the integrated fixed-film-activated sludge (IFAS) system designed for nitrogen removal. Biofilm growth and its contribution to nitrification were monitored under various operating conditions in a semi-industrial pilot-scale plant. Nitrification rates were observed in biofilms developed on free-floating media and in activated sludge operated under a low sludge retention time (4 days) and at an ammonia loading rate of 45–70 gNH4-N/kgMLVSS/d. Operational conditions, i.e. oxygen concentration, redox potential, suspended solids concentration, ammonium and nitrates, were monitored continuously in the reactors. High removal efficiencies were observed for carbon and ammonium at high-loading rate. The contribution of biofilm to nitrification was determined as 40–70% of total NOx-N production under the operating conditions tested. Optimal conditions to optimize process compacity were determined. The tested configuration responds especially well to winter and summer nitrification conditions. These results help provide a deeper understanding of how autotrophic biomass evolves through environmental and operational conditions in IFAS systems.


2013 ◽  
Vol 67 (2) ◽  
pp. 410-417 ◽  
Author(s):  
M. A. De la Rubia ◽  
V. Fernández-Cegrí ◽  
F. Raposo ◽  
R. Borja

Due to the chemical and physical structure of a lignocellulosic biomass, its anaerobic digestion (AD) is a slow and difficult process. In this paper, the results obtained from a batch biochemical methane potential (BMP) test and fed-batch mesophilic AD assays of sunflower oil cake (SuOC) are presented. Taking into account the low digestibility shown during one-stage experiments the methane yield decreased considerably after increasing the organic loading rate (OLR) from 2 to 3 g VS L−1 d−1, SuOC was subjected to a two-stage AD process (hydrolytic-acidogenic and methanogenic stages), in two separate reactors operating in series where the methanogenic stage became acidified (with >1,600 mg acetic acid L−1) at an OLR as low as 2 g VS L−1 d−1. More recently, BMP assays were carried out after mechanical, thermal, and ultrasonic pre-treatments to determine the best option on the basis of the methane yield obtained.


Sign in / Sign up

Export Citation Format

Share Document