scholarly journals Technical, Environmental, and Qualitative Assessment of the Oak Waste Processing and Its Usage for Energy Conversion

2020 ◽  
Vol 12 (19) ◽  
pp. 8113
Author(s):  
Algirdas Jasinskas ◽  
Ramūnas Mieldažys ◽  
Eglė Jotautienė ◽  
Rolandas Domeika ◽  
Edvardas Vaiciukevičius ◽  
...  

The article analyses and evaluates the possibilities of using oak bark, oak leaves, and their mixtures for biofuel. The preparation of this waste for the burning process (milling, granulation) has been investigated and the results have been presented together with the analysis of the prepared granules’ properties—humidity, density, strength, elemental composition, ash content, caloric value, and others. The moisture content of the oak waste granules ranged from 8.1% to 12.5%, and the granules’ density ranged from 975.8 to 1122.2 kg m−3 DM (dry matter). The amount of oak ash found was very high (from 10.4% to 14.7%)—about 10 times higher than that of wood waste granules. The calorific value determined after burning the oak bark and leaves pellets was sufficiently high, ranging from 17.3 to 17.7 MJ kg−1. This thermal value of oak waste granules was close to the calorific value of the herbaceous plant species and some types of wood waste. The environmental impact of burning the granules of oak waste was also assessed. The harmful emissions of carbon monoxide and dioxide, nitrogen oxides, and unburnt hydrocarbons into the environment were found to be below the permissible limits for the incineration of oak waste granules. The highest CO gas concentration, determined when burning the oak leaves, was 1187.70 mg m−3, and the lowest NOx concentration, determined when burning the oak bark and leaf mixture granules, was 341.2 mg m−3. The coefficient of energy efficiency R of the granulated oak leaves biofuel, when the oak waste biomass moisture content was reduced by 10%, reached 3.64. It was very similar to the results of previous studies of various types of granulated straw biofuel (3.5–3.7). The research results presented show that, given that the main parameters of oak waste meet the basic requirements of solid biofuel, oak bark, leaves, and their mixture can be recommended to be used as solid biofuels.

Author(s):  
Abd Halim Shamsuddin ◽  
Mohd Shahir Liew

Malaysia has about 4.2 million hectares of oil palm plantation. The palm oil milling industry has over 400 mills throughout the country with total milling capacity of 82 million tonnes fresh fruit bunches, FFB, per year. In 2003, the amount of FFB processed was 67 million tonnes, which generated solid wastes in the forms of empty fruit bunches, EFB (19.43 million tonnes), mesocarp fibres (12.07 million tonnes) and palm kernel shell (4.89 million tonnes). These wastes has moisture content of 60–70% for EFB and mesocarp fibre, and 34–40% for palm kernel shell, and calorific value of 5.0 – 18.0 Mj/kg. A processing technology was developed to process these low quality biomass fuels into high quality solid biofuel briquettes with moisture content in the range 8–12%. Depending on the formulations and the sources of the raw biomass, the final solid biofuel briquettes can have calorific values in the range of 18–25 Mj/kg. The production of the solid biofuel briquettes would be an attractive financial advantage for full exploitation of biomass fuels. Logistic problems due to the disperse nature of the biomass resources would significantly be addressed.


2015 ◽  
Vol 55 (5) ◽  
pp. 335 ◽  
Author(s):  
Miloš Matúš ◽  
Peter Križan ◽  
Juraj Beniak ◽  
Ľubomír Šooš

The moisture content of densified biomass is a limit parameter influencing the quality of the solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as the production process of this biofuel. The paper deals with the experimental research of the effect of moisture content of densified material on the final quality of biofuel in the form of logs. Experiments based on the single-axis densification of spruce sawdust were realized by hydraulic piston press, where the densified logs were produced under room temperature. The effect of moisture content on the quality properties of the logs, including density, change of moisture, expansion and physical changes, were studied. The results show the necessary moisture ranges for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel.


2019 ◽  
Vol 38 (8) ◽  
pp. 886-895 ◽  
Author(s):  
Monzerrath Rivera-Tenorio ◽  
Roger Moya

The construction sector in Costa Rica produces approximately 100 kg per square meter of residues, of which wood waste comprises 30%. Utilization of these wastes is still limited, but options are being sought and biomass is one of them. The aim of this work was to evaluate the characteristics of biomass produced from wood waste from construction, its energy potential, and its appropriateness for pellet manufacturing by determining its energy, physical, and mechanical characteristics. It was found that wood waste from construction is composed of different species with densities below 0.5 g/cm3, 26% moisture content, and 10% ash content; contamination with cement and nails can reach 6%. The process of pellet manufacturing can adapt adequately to using wood waste from construction, with an efficiency or yielding of 33%. Pellets presented a calorific value of 19573 kJ/kg, a bulk density of 1.25 g/cm3, an apparent density of 700 kg/m3, a failure force in compression of 467 N, and durability of 94.28%. According to different standards, the results obtained for biomass from wood waste are within the range established for pellet quality; therefore, wood waste from construction can be used to produce pellets, despite the disadvantage of it presenting high ash content.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1413
Author(s):  
Elena Leoni ◽  
Manuela Mancini ◽  
Daniele Duca ◽  
Giuseppe Toscano

Near infrared spectroscopy is a non-invasive and rapid technique to support the analysis of solid biofuels such as woodchip, which is considered as a suitable alternative for energy production, according to European goals for fossil fuel reduction. Chemical and physical properties of the woodchip influence combustion performance, so the most discriminant parameters such as moisture and ash content and gross calorific value were constantly monitored. The aim of this study was the development of prediction models for these three parameters with the use of a hand-held NIR spectrometer. Laboratory analyses were carried out to evaluate the quality of several Italian samples from a power plant, and PLS regression models were developed to test prediction accuracy. Moreover, the most relevant wavelengths were investigated to discriminate chemical compounds influence. Prediction models demonstrated the capacity of handheld MicroNIR instrument to be considered a practical tool for solid biofuel quality assessment. As a consequence, NIR spectroscopy improved real-time analysis and made it suitable for practical and industrial applications, as supported by the recent Italian standard UNI/TS 11765.


2018 ◽  
Vol 19 (3) ◽  
pp. 185-190
Author(s):  
I Nyoman Sukarta ◽  
I Dewa Sastrawidana ◽  
Ni Putu Ayuni ◽  
Sudiana I

Author(s):  
Sahar Safarian ◽  
Runar Unnthorsson ◽  
Christiaan Richter

<div data-canvas-width="75.53283108244308">A simulation model for integrated waste biomass gasification with cogeneration heat and power has been developed using Aspen Plus. The model can be used as a predictive tool for optimization of the gasifier performance. The system has been modeled in four stages. Firstly, moisture content of biomass is reduced. Secondly biomass is decomposed into its elements by specifying yield distribution. Then gasification reactions have been modeled using Gibbs free energy minimization approach. Finally, power is generated through the internal combustion engine as well as heat recovery system generator. In simulation study, the operating parameters like temperature, equivalence ratio (ER) and biomass moisture content are varied over wide range and their effect on syngas composition, low heating value (LHV) and electrical efficiency (EE) are investigated. Overally, increasing temperature and decreasing ER and MC lead to improvement of the gasification performance. However, for maximum electrical efficiency, it is important to find the optimal values of operating conditions.</div><div data-canvas-width="156.02508062890539">The optimum temperature, ER and MC of the down draft gasifier for timber and wood waste are 800 ̊C, 0.2- 0.3 and 5%. At such optimum conditions, CO and H</div><div>2 reach to the highest production and LHV and EE are around 7.064 MJ Nm-3 and 45%, respectively.</div>


2018 ◽  
Vol 168 ◽  
pp. 07005 ◽  
Author(s):  
Peter Križan ◽  
Michal Svátek ◽  
Miloš Matúš ◽  
Juraj Beniak

The main aim of this paper is to present the design of experiment (DOE) and evaluation methodology for this experimental plan in order to determine the parameters effect of biomass densification process on final solid biofuels quality. One of the recovery possibilities for waste biomass raw materials is production of solid biofuels. Using a variety combination of influencing variables can be improve the final quality of solid biofuels. Raw biomass material variables influence, especially (type of raw material, particle size, moisture content, compression pressure and compression temperature) can be recognized during the production of solid biofuels. Their effect can be seen through the quality indicators; especially mentioned variables significantly influence the mechanical quality indicators of solid biofuels. In this experimental research authors would like to investigate properties and behaviour of wood raw waste biomass during densification. This contribution discusses the analysis and design of experimental process, its individual steps and their subsequent DOE leading to the development of a mathematical model that will describe this process. This paper also presents the research findings regarding the effect of influencing variables on final density of solid biofuels during densification. Aim of the experimental process is to determine the mutual interaction between solid biofuels density and influencing variables during densification. Effect of compression pressure, compression temperature, moisture content and particle size on solid biofuels density from wood sawdust was determined.


2012 ◽  
Vol 50 (No. 2) ◽  
pp. 61-65
Author(s):  
P. Heneman

Humidity, as one of the most important physical properties of pressed solid biofuels, affects thel calorific value of the biofuel and its consistency. Biofuel humidity depends on the initial humidity of raw material, which varies and depends on many factors. Method of manufacture and place and duration of storage have a considerable effect on solid biofuel humidity as well. Humidity of pressed solid biofuels changes not only during the pressing itself, when temperature increases by compression and a part of contained moisture evaporates, but also in the course of handling and storage under unstable environment conditions with high relative air humidity, when, on the contrary, their humidity gradually increases due to their hygroscopicity. Properties of solid biofuels change with their increasing humidity &ndash; their calorific value and consistency decreasing and the share of crumbles increasing.


2014 ◽  
Vol 131 ◽  
pp. 345-367 ◽  
Author(s):  
Peitao Zhao ◽  
Yafei Shen ◽  
Shifu Ge ◽  
Zhenqian Chen ◽  
Kunio Yoshikawa

Sign in / Sign up

Export Citation Format

Share Document