scholarly journals Effects of Land Use Change from Natural Forest to Livestock on Soil C, N and P Dynamics along a Rainfall Gradient in Mexico

2020 ◽  
Vol 12 (20) ◽  
pp. 8656
Author(s):  
Daniela Figueroa ◽  
Patricia Ortega-Fernández ◽  
Thalita F. Abbruzzini ◽  
Anaitzi Rivero-Villlar ◽  
Francisco Galindo ◽  
...  

The effects of converting native forests to livestock systems on soil C, N and P contents across various climatic zones are not well understood for the tropical region. The goal of this study was to test how soil C, N and P dynamics are affected by the land-use change from natural forests to livestock production systems (extensive pasture and intensive silvopastoral systems) across a rainfall gradient of 1611–711 mm per year in the Mexican tropics. A total of 15 soil-based biogeochemical metrics were measured in samples collected during the dry and rainy seasons in livestock systems and mature forests for land-use and intersite comparisons of the nutrient status. Our results show that land-use change from natural forests to livestock production systems had a negative effect on soil C, N and P contents. In general, soil basal respiration and C-acquiring enzyme activities increased under livestock production systems. Additionally, reduction in mean annual rainfall affected moisture-sensitive biogeochemical processes affecting the C, N and P dynamics. Our findings imply that land-use changes alter soil C, N and P dynamics and contents, with potential negative consequences for the sustainability of livestock production systems in the tropical regions of Mexico investigated.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mbezele Junior Yannick Ngaba ◽  
Ya-Lin Hu ◽  
Roland Bol ◽  
Xiang-Qing Ma ◽  
Shao-Fei Jin ◽  
...  

Abstract Soil C and N turnover rates and contents are strongly influenced by climates (e.g., mean annual temperature MAT, and mean annual precipitation MAP) as well as human activities. However, the effects of converting natural forests to intensively human-managed plantations on soil carbon (C), nitrogen (N) dynamics across various climatic zones are not well known. In this study, we evaluated C, N pool and natural abundances of δ13C and δ15N in forest floor layer and 1-meter depth mineral soils under natural forests (NF) and plantation forest (PF) at six sites in eastern China. Our results showed that forest floor had higher C contents and lower N contents in PF compared to NF, resulting in high forest floor C/N ratios and a decrease in the quality of organic materials in forest floor under plantations. In general, soil C, N contents and their isotope changed significantly in the forest floor and mineral soil after land use change (LUC). Soil δ13C was significantly enriched in forest floor after LUC while both δ13C and δ15N values were enriched in mineral soils. Linear and non-linear regressions were observed for MAP and MAT in soil C/N ratios and soil δ13C, in their changes with NF conversion to PF while soil δ15N values were positively correlated with MAT. Our findings implied that LUC alters soil C turnover and contents and MAP drive soil δ13C dynamic.


2014 ◽  
Vol 111 (10) ◽  
pp. 3709-3714 ◽  
Author(s):  
Petr Havlík ◽  
Hugo Valin ◽  
Mario Herrero ◽  
Michael Obersteiner ◽  
Erwin Schmid ◽  
...  

Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.


2021 ◽  
Author(s):  
Dario Ruggiu ◽  
Salvatore Urru ◽  
Roberto Deidda ◽  
Francesco Viola

<p>The assessment of climate change and land use modifications effects on hydrological cycle is challenging. We propose an approach based on Budyko theory to investigate the relative importance of natural and anthropogenic drivers on water resources availability. As an example of application, the proposed approach is implemented in the island of Sardinia (Italy), which is affected by important processes of both climate and land use modifications. In details, the proposed methodology assumes the Fu’s equation to describe the mechanisms of water partitioning at regional scale and uses the probability distributions of annual runoff (Q) in a closed form. The latter is parametrized by considering simple long-term climatic info (namely first orders statistics of annual rainfall and potential evapotranspiration) and land use properties of basins.</p><p>In order to investigate the possible near future water availability of Sardinia, several climate and land use scenarios have been considered, referring to 2006-2050 and 2051-2100 periods. Climate scenarios have been generated considering fourteen bias corrected outputs of climatic models from EUROCORDEX’s project (RCP 8.5), while three land use scenarios have been created following the last century tendencies.</p><p>Results show that the distribution of annual runoff in Sardinia could be significantly affected by both climate and land use change. The near future distribution of Q generally displayed a decrease in mean and variance compared to the baseline.   </p><p>The reduction of  Q is more critical moving from 2006-2050 to 2051-2100 period, according with climatic trends, namely due to the reduction of annual rainfall and the increase of potential evapotranspiration. The effect of LU change on Q distribution is weaker than the climatic one, but not negligible.</p>


2020 ◽  
Vol 31 (7) ◽  
pp. 909-923 ◽  
Author(s):  
Rafael da Silva Teixeira ◽  
Ricardo Cardoso Fialho ◽  
Daniela Cristina Costa ◽  
Rodrigo Nogueira Sousa ◽  
Rafael Silva Santos ◽  
...  

2015 ◽  
Vol 37 (5) ◽  
pp. 497 ◽  
Author(s):  
Sofia Marinaro ◽  
Ricardo H. Grau

Increasing global food demand requires the exploration of agricultural production systems that minimise the conflict between food production and biodiversity conservation. Cattle ranching is a main land-use in tropical and sub-tropical South American semi-arid ecosystems, such as the Chaco eco-region of sub-tropical Argentina, one of the most active frontiers of land-use change. Despite open habits being a key component of the Chaco landscape, conservation studies and policies have focussed on forests. In this study, bird and mammal communities of three different open-canopy livestock-producing systems in the semi-arid Argentinian Chaco: natural grasslands, sown non-native pastures and silvopastoral systems are discussed. Diversity (Inverse Simpson index) and species composition (multivariate ordinations) were measured and species identified that characterise each system (indicator species). The three livestock systems did not significantly differ in terms of diversity but showed differences in the composition of bird communities. Natural grasslands had the highest number of bird and mammal indicator species (including Myrmecophaga tridactyla, a high conservation-value species). These results highlight natural grasslands as a landscape unit with a high conservation value and indicate that they should be explicitly targeted by conservation and land-use policies, particularly because they represent a small and rapidly decreasing proportion of the semi-arid Argentinian Chaco.


2021 ◽  
Vol 14 (10) ◽  
pp. 6467-6494
Author(s):  
Abhijeet Mishra ◽  
Florian Humpenöder ◽  
Jan Philipp Dietrich ◽  
Benjamin Leon Bodirsky ◽  
Brent Sohngen ◽  
...  

Abstract. Out of 1150 Mha (million hectares) of forest designated primarily for production purposes in 2020, plantations accounted for 11 % (131 Mha) of this area and fulfilled more than 33 % of the global industrial roundwood demand. However, adding additional timber plantations to meet increasing timber demand intensifies competition for scarce land resources between different land uses such as food, feed, livestock and timber production. Despite the significance of plantations with respect to roundwood production, their importance in meeting the long-term timber demand and the implications of plantation expansion for overall land-use dynamics have not been studied in detail, in particular regarding the competition for land between agriculture and forestry in existing land-use models. This paper describes the extension of the modular, open-source land system Model of Agricultural Production and its Impact on the Environment (MAgPIE) using a detailed representation of forest land, timber production and timber demand dynamics. These extensions allow for a better understanding of the land-use dynamics (including competition for land) and the associated land-use change emissions of timber production. We show that the spatial cropland patterns differ when timber production is accounted for, indicating that timber plantations compete with cropland for the same scarce land resources. When plantations are established on cropland, it causes cropland expansion and deforestation elsewhere. Using the exogenous extrapolation of historical roundwood production from plantations, future timber demand and plantation rotation lengths, we model the future spatial expansion of forest plantations. As a result of increasing timber demand, we show a 177 % increase in plantation area by the end of the century (+171 Mha in 1995–2100). We also observe (in our model results) that the increasing demand for timber amplifies the scarcity of land, which is indicated by shifting agricultural land-use patterns and increasing yields from cropland compared with a case without forestry. Through the inclusion of new forest plantation and natural forest dynamics, our estimates of land-related CO2 emissions better match with observed data, in particular the gross land-use change emissions and carbon uptake (via regrowth), reflecting higher deforestation with the expansion of managed land and timber production as well as higher regrowth in natural forests and plantations.


2022 ◽  
Vol 13 (01) ◽  
pp. 32-68
Author(s):  
Johnny Kofi Awoonor ◽  
Fowzia Adiyah ◽  
Bright Fafali Dogbey

Sign in / Sign up

Export Citation Format

Share Document