scholarly journals Effect of Recycled Polyethylene Terephthalate Strips on the Mechanical Properties of Cement-Treated Lateritic Sandy Soil

2020 ◽  
Vol 12 (23) ◽  
pp. 9801
Author(s):  
Maitê Rocha Silveira ◽  
Paulo César Lodi ◽  
Natália de Souza Correia ◽  
Roger Augusto Rodrigues ◽  
Heraldo Luiz Giacheti

The civil engineering construction industry is nowadays one of the largest consumers of natural resources. Therefore, the proposal of using alternative materials that seek to reduce waste production or the use of previously generated waste is becoming increasingly necessary. This paper evaluated the effect of recycled polyethylene terephthalate (PET) strips on the mechanical properties of a cement-treated lateritic sandy soil. Unconfined compression strength (UCS) tests were conducted in natural and PET strips mixtures in different strips lengths and contents. In addition to UCS tests, compaction tests were also conducted in order to analyze the effect of these inclusions on the properties of a lateritic sandy soil. Lastly, direct shear tests were conducted on natural soil-strip, soil-cement, and soil-cement-strip composites using optimum UCS results. The addition of strips to the soil-cement composite showed an increase in the soil cohesion parameter. The inclusion of strips also provided a more ductile behavior to the soil, presenting greater deformations with fewer stress peaks. Results showed that the recycled strips’ inclusion in soil-cement can provide a material with high strength, ductility, and a highly sustainable alternative.

2013 ◽  
Vol 365-366 ◽  
pp. 1157-1160 ◽  
Author(s):  
Ching Wen Lin ◽  
Wen Hao Hsing ◽  
Ching Wen Lou ◽  
Jin Mao Chen ◽  
Jia Horng Lin

This study produces composite geotextile, and evaluates its effectiveness of being used for soil protection. Kevlar fibers, high strength polyethylene terephthalate (HPET) fibers, recycled polyethylene terephthalate (RPET) fibers, and nylon grids are made into Kevlar/PET/Nylon composite geotextiles, which are then tested for air permeability, and tensile, tearing, and bursting strength. The experimental results show that when the ratio of Kevlar fibers to HPET is 0/40, the resulting composite geotextile has the optimum mechanical properties, where the tensile strength is approximately 990 N, tearing strength is approximately 890 N, bursting strength is approximately 3700, and an air permeability is around 35 cm3/cm2/s.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


2014 ◽  
Vol 982 ◽  
pp. 59-62 ◽  
Author(s):  
Filip Vogel

This article discusses about the textile reinforced concrete. The textile reinforced concrete is a new material with great possibilities for modern construction. The textile reinforced concrete consists of cement matrix and textile reinforcement of high strength fibers. This combination of cement matrix and textile reinforcement is an innovative combination of materials for use in the construction. The main advantage of the textile reinforced concrete is a high tensile strength and ductile behavior. The textile reinforced concrete is corrosion resistant. With these mechanical properties can be used textile reinforced concrete in modern construction.


2016 ◽  
Vol 721 ◽  
pp. 53-57 ◽  
Author(s):  
Aina Bernava ◽  
Skaidrite Reihmane ◽  
Juris Bitenieks ◽  
Maris Manins

The varieties of using nonwovens (NW) increases. The results of study about the influence of hybrid fibres content and technological parameters of production on properties of NW made from webs of two contents of hemp, recycled polyethylene terephthalate and polypropylene fibres, produced in two temperature and pressure conditions are presented. It is concluded that NW surface parameters and mechanical properties can be purposefully influenced with webs composition and production technology of NW. Produced NW are applicable, where lightweight and water permeable materials are necessary.


2015 ◽  
Vol 38 (3) ◽  
pp. 538-554 ◽  
Author(s):  
Jelena D. Rusmirović ◽  
Tijana Radoman ◽  
Enis S. Džunuzović ◽  
Jasna V. Džunuzović ◽  
Jasmina Markovski ◽  
...  

2018 ◽  
Vol 34 ◽  
pp. 01001
Author(s):  
Faisal Sheikh Khalid ◽  
Nurul Bazilah Azmi ◽  
Puteri Natasya Mazenan ◽  
Shahiron Shahidan ◽  
Noorwirdawati Ali

This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.


Sign in / Sign up

Export Citation Format

Share Document