scholarly journals Towards Improved Circular Economy and Resource Security in South Korea

2020 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Kyounga Lee ◽  
Jongmun Cha

This study explores the importance of critical raw materials and minerals by analyzing the Republic of Korea’s recent circular economy and resource security policy. Raw materials and rare metals are becoming increasingly significant to the Korean economy because the country is currently shifting away from fossil fuels and nuclear power towards renewable energy resources as well as transforming its industries towards decarbonization, digitization, and automation. Korea is a resource-poor country and is heavily dependent on imported minerals and rare earths, which are essential for its economy and new industry. Responding to these challenges and concerns, Korea is moving towards a sustainable circular economy and achieving greater resource security. Despite certain limitations, this transition would ultimately contribute in preparing Korea for current and future challenges in the areas of critical raw materials and minerals.

Author(s):  
Peter Rez

It is nearly always the case that the energy used to make the materials dominates, whereas the energy used in shipping either the raw materials or the finished product is usually small in comparison. For most things that we use, the embodied energy is much less than the energy consumed in operational use. When considering energy generation, there are two energy costs that should be considered. There is the energy needed to build the system, which can be thought of as a ‘capital’ or investment energy, and the energy needed to provide the fuel. For fossil fuels, the energy needed to provide the fuel dominates; for renewables, the fuel is free, so there is only an investment energy. The investment energy for nuclear power is greater than the energy needed to make the fuel, but only by a factor of about 4.


2012 ◽  
Vol 616-618 ◽  
pp. 1133-1136 ◽  
Author(s):  
Ji Zhong Zhu ◽  
Kwok Cheung

Every type of energy utilization for electricity generation has environmental consequences. The main consequences of burning fossil fuels and of nuclear power are well-known. Renewable energy sources (wind, solar, biomass, hydroelectric, geothermal, etc.) are generally thought of as harmless, but this doesn’t mean they have no environmental consequences at all. Most of them have a significant aesthetic impact and require large areas of land. Some also have a significant impact on the eco-system (birds, fishes, etc.). This paper summarizes the environmental issues caused by all kinds of renewable energy sources.


The steel industry, as a major consumer of coking coal and hydrocarbons, is exploring ways to reduce its dependence on these potentially expensive raw materials by making direct use of nuclear heat. Of the present two routes for producing steel, the major one (the hot metal route) employing the blast furnace which reduces iron ore to yield molten iron which is subsequently refined by basic oxygen steelmaking, does not lend itself to the application of nuclear heat; in the second (the cold metal route) recycled steel-or a substitute-is melted in an arc furnace where already today a proportion of the electricity used is generated in nuclear power stations. The development of ‘direct reduction’ processes allows iron ore to be converted to a solid pre-reduced iron product. In the conventional prereduction process, fossil fuels are used as both fuel and as chemical reductant. With nuclear heat, the fossil fuel-re-formed to a suitable reductant-is confined to the chemical role and not used as a source of heat. This reduction stage would be followed by arc melting, as in the present cold metal route. This basic process, which at present constitutes the minor route, could become the major one for the manufacture of steel in the long term. The lecture will discuss the various processes and outline a possible configuration for an eventual nuclear steelworks, together with some of the technical problems involved.


Author(s):  
Sohel Shaikh

There has been a recent push to replace the burning of fossil fuels with biofuel. The replacement of this non-renewable energy resources with biological waste lowers the overall pollution of the world. The waste biomass similar to dry leaves, sawdust, rice husk, coffee husk etc. are gathered and compressed into the briquettes, these briquettes can also transport and used as fuel to generate heat and energy. It is a time to take initiative to turn Biomass into a source of energy. Hence here we are taking responsibility in converting agricultural and forestry wastes into useful biomass briquettes, which can also be used as a substitute for Coal and other non-renewable resources. Biomass briquettes are a biofuel substitute or replacement to a coal and charcoal. Biomass briquettes can be manufactured by using agricultural and forestry waste. The low-density biomass Is converted into high density biomass briquettes with the help of a briquetting machine that Uses binder or without binder i.e., binder less technique, as there is no any type of chemical is used so it is 100% natural. The mostly used raw material for biomass briquettes, Mustard Stalks, Sawdust, Groundnut Shell, Coffee Husk, Coir Pitch, Jute Sticks, Sugarcane Bagasse, Rice Husk, Cotton Stalks, Caster Seed Shells / Stalk, Wood Chips, Paddy straw, Tobacco Waste, Tea Waste, maize stalks, bajra Cobs, Arhar stalks, Bamboo Dust, Wheat Straw, Sunflower Stalk, Palm Husk, Soya bean Husk, Veneer Residues, Barks & Straws, Leaf’s, Pine Niddle, Seeds Cases etc. are used. Biomass Briquette are largely used for any type of thermal application, like steam generation in Boilers, in furnace & foundries (It can be used for metal heating & melting where melting point Is less than 1000d/cel.), for heating purpose (Residential & Commercial Heating in winter, Heating in Cold areas and Hotels, Canteens, Cafeterias and house hold kitchen appliances, restaurants etc.), There are several machines available in market but those machines are bulky and are costly, hence here we have developed a portable, low-cost briquetting machine, which makes use of simple mechanism to convert the biological waste into useful briquettes. Any waste or any proportion of Agri waste can be used but with proper binding agent. Some raw materials doesn’t require any binding material high pressure compression is used. The paper presents the results of a project focused on the development of briquettes from the sawdust (Waste Wood) resulting from the primary waste from timber companies. This sawdust currently lacks a useful purpose, and its indiscriminate burning generates CO and CO2 emissions which are harmful to nature. Sawmill Agri waste is a huge problem specially in urban cities. These wastes are burnt openly which is causing environmental pollution and also becomes reason for human health care.


Author(s):  
Raheel Muzzammel ◽  
Rabia Arshad ◽  
Saba Mehmood ◽  
Danista Khan

Nowadays, energy management is a subject of great importance and complexity. Pakistan, being in a state of developing country, generates electrical power mainly by using non-renewable sources of energy. Non-renewable entities are fossil fuels such as furnace oil, natural gas, coal, and nuclear power. Pakistan has been facing a severe shortage of production in energy sector for last two decades. This shortfall is affecting the industrial development as well as economic growth. With the growing population, the load demand is rapidly increasing and there must be a need to expand the existing ones or to build new power systems. In this paper, an autonomous management system has been proposed to enhance quality, reliability and confidence of utilization of energy between end consumers and suppliers. Such objectives can only be fulfilled by making the power supply secure for end consumers. Distributed and centralized control systems are involved for maintaining a balance between renewable energy resources and base power, so that end consumers demand can be fulfilled when required. A reliable Two-way communication system between suppliers and end consumers has been proposed by using Message Digest algorithm which ensures that there would be no energy theft. Simulations have been done in MATLAB/ Simulink environment and results have been presented to show the effectiveness of the proposed model.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 842
Author(s):  
Pilar Salagre ◽  
Yolanda Cesteros

The concept of circular economy is based on several principles, such as the use of renewable energy resources, including those obtained from the sun, wind, or water; the use of natural raw materials; the manufacturing of products avoiding the generation of wastes and pollution; keeping products and materials in use for a longer time; or giving new applications to waste [...]


2020 ◽  
Vol 18 (4) ◽  
pp. 493-499
Author(s):  
Nela Petronijević ◽  
Vesna Alivojvodić ◽  
Miroslav Sokić ◽  
Branislav Marković ◽  
Srđan Stanković ◽  
...  

Today human society is already witnessing rapid depletion of non-renewable ore resources. As the distribution of raw material resources globally is very off-balance, and preassure on environment as the consequence of ore exploatation is not negligible, re-utilization and recycling of industrial side-streams gaining on importance. Finding new potentially anthropogenic resources of material (at first place critical raw materials) are inline with sustainable waste management goals, and in correlation with boundaries given by the circular economy principles. Side-streams from mines can become source for recovery of these materials. The aim of this paper was to analyze position of mining waste in correlation with circular economy principles, as well potential for implementation of them within extraction industry in the Republic of Serbia.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 873 ◽  
Author(s):  
Antonio Valero ◽  
Alicia Valero

This paper presents a thermodynamic vision of the depletion of mineral resources. It demonstrates how raw materials can be better assessed using exergy, based on thermodynamic rarity, which considers scarcity in the crust and energy requirements for extracting and refining minerals. An exergy analysis of the energy transition reveals that, to approach a decarbonized economy by 2050, mineral exergy must be greater than that of fossil fuels, nuclear energy, and even all renewables. This is because clean technologies require huge amounts of many different raw materials. The rapid exhaustion of mines necessitates an increase in recycling and reuse, that is, a “circular economy”. As seen in the automobile industry, society is far removed from closing even the first cycle, and absolute circularity does not exist. The Second Law dictates that, in each cycle, some quantity and quality of materials is unavoidably lost (there are no circles, but spirals). For a rigorous recyclability analysis, we elaborate the exergy indicators to be used in the assessment of the true circularity of recycling processes. We aim to strive toward an advanced economy focused on separating techniques and promoting circularity audits, an economy that inspires new solutions: an in-spiral economy.


Sign in / Sign up

Export Citation Format

Share Document