scholarly journals Design and Improvement of Existing Briquette Making Machine

Author(s):  
Sohel Shaikh

There has been a recent push to replace the burning of fossil fuels with biofuel. The replacement of this non-renewable energy resources with biological waste lowers the overall pollution of the world. The waste biomass similar to dry leaves, sawdust, rice husk, coffee husk etc. are gathered and compressed into the briquettes, these briquettes can also transport and used as fuel to generate heat and energy. It is a time to take initiative to turn Biomass into a source of energy. Hence here we are taking responsibility in converting agricultural and forestry wastes into useful biomass briquettes, which can also be used as a substitute for Coal and other non-renewable resources. Biomass briquettes are a biofuel substitute or replacement to a coal and charcoal. Biomass briquettes can be manufactured by using agricultural and forestry waste. The low-density biomass Is converted into high density biomass briquettes with the help of a briquetting machine that Uses binder or without binder i.e., binder less technique, as there is no any type of chemical is used so it is 100% natural. The mostly used raw material for biomass briquettes, Mustard Stalks, Sawdust, Groundnut Shell, Coffee Husk, Coir Pitch, Jute Sticks, Sugarcane Bagasse, Rice Husk, Cotton Stalks, Caster Seed Shells / Stalk, Wood Chips, Paddy straw, Tobacco Waste, Tea Waste, maize stalks, bajra Cobs, Arhar stalks, Bamboo Dust, Wheat Straw, Sunflower Stalk, Palm Husk, Soya bean Husk, Veneer Residues, Barks & Straws, Leaf’s, Pine Niddle, Seeds Cases etc. are used. Biomass Briquette are largely used for any type of thermal application, like steam generation in Boilers, in furnace & foundries (It can be used for metal heating & melting where melting point Is less than 1000d/cel.), for heating purpose (Residential & Commercial Heating in winter, Heating in Cold areas and Hotels, Canteens, Cafeterias and house hold kitchen appliances, restaurants etc.), There are several machines available in market but those machines are bulky and are costly, hence here we have developed a portable, low-cost briquetting machine, which makes use of simple mechanism to convert the biological waste into useful briquettes. Any waste or any proportion of Agri waste can be used but with proper binding agent. Some raw materials doesn’t require any binding material high pressure compression is used. The paper presents the results of a project focused on the development of briquettes from the sawdust (Waste Wood) resulting from the primary waste from timber companies. This sawdust currently lacks a useful purpose, and its indiscriminate burning generates CO and CO2 emissions which are harmful to nature. Sawmill Agri waste is a huge problem specially in urban cities. These wastes are burnt openly which is causing environmental pollution and also becomes reason for human health care.

Konversi ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 29
Author(s):  
Yuli Ristianingsih ◽  
Hero Islami ◽  
Muhammad Sarwani

Abstract- Rice husk and empty fruit bunches are agricultural and plantation wastes which have fiber cellulose and hemicellulose, it can be converted to pulp and paper. This research aims to study the effect of NaOH concentration (2, 4, 6 and 8% w/v) and raw material composition to pulp yield and to study characteristics of the paper combination of rice husk and empty fruit bunches using soda process based on SEM and XRD analysis.  This research using soda process because it is suitable for non-wood raw materials, low cost operations and not use sulfur compounds. Dry raw materials are mixed with NaOH and digesting using autoclave (100°C, 1 atm) for 60 minutes. NaOH concentration optimum used in the pulping process a combination rice husk and empty fruit bunches (1:3, 1:2, 1:1, 2:1 and 3:1) and then cooled for 30 minutes. Pulp is bleached with NaClO 5.25% (v / v), then formed and dried as paper. The lowest pulp yield obtained in a ratio of 2: 1 is 27.6%. Based on the observation of SEM known the fiber of rice husk and empty fruit bunches is 5.88 to 9.8 μm and 8.82 to 14.71 μm, while based on XRD observations, chemical treatment can improve the characteristic of peak intensity on paper combination. The highest advances of peak intensity in the 1:3 ratio is 71.28% (cellulose I)  dan  83.33% (cellulose II).                                                                                                                    Keywords: rice husk, empty fruit bunches, chemical pulping, soda process 


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


Author(s):  
K. Malins ◽  
V. Kampars ◽  
R. Kampare ◽  
T. Rusakova

The transesterification of vegetable oil using various kinds of alcohols is a simple and efficient renewable fuel synthesis technique. Products obtained by modifying natural triglycerides in transesterification reaction substitute fossil fuels and mineral oils. Currently the most significant is the biodiesel, a mixture of fatty acid methyl esters, which is obtained in a reaction with methanol, which in turn is obtained from fossil raw materials. In biodiesel production it would be more appropriate to use alcohols which can be obtained from renewable local raw materials. Ethanol rouses interest as a possible reagent, however, its production locally is based on the use of grain and therefore competes with food production so it would implicitly cause increase in food prices. Another raw material option is alcohols that can be obtained from furfurole. Furfurole is obtained in dehydration process from pentose sugars which can be extracted from crop straw, husk and other residues of agricultural production. From furfurole the tetrahydrofurfuryl alcohol (THFA), a raw material for biodiesel, can be produced. By transesterifying rapeseed oil with THFA it would be possible to obtain completely renewable biodiesel with properties very close to diesel [2-4]. With the purpose of developing the synthesis of such fuel, in this work a three-stage synthesis of rapeseed oil tetrahydrofurfurylesters (ROTHFE) in sulphuric acid presence has been performed, achieving product with purity over 98%. The most important qualitative factors of ROTHFE have been determined - cold filter plugging point, cetane number, water content, Iodine value, phosphorus content, density, viscosity and oxidative stability.


2014 ◽  
Vol 936 ◽  
pp. 986-991
Author(s):  
Chuan Hui Gao ◽  
Li Ding ◽  
Yu Min Wu ◽  
Chuan Xing Wang ◽  
Jun Xu

A low-cost raw material, bittern obtained from the production process of sea salt, was used to prepare magnesium oxysulfate hydrate (MgSO4·5Mg (OH)2·2H2O, abbreviated as 152MOS) whiskers via hydrothermal synthesis with ammonia and magnesium sulfate as the other starting raw materials. The bittern was firstly filtered and then used directly without de-coloring. X-ray powder diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) were employed to investigate the composition and morphology of the products. It was found that the 152MOS whiskers synthesized from bittern at 190°C for 3 hours exhibited fanlike morphology. The formation of the fanlike whiskers was inhibited and most of the whiskers presented as single fibers when ethanol was used as crystal control agent in the hydrothermal process. From the two-dimensional steps observed at tips of the whiskers, a possible growth mechanism was speculated that it was the extension of dislocations that made the growth of the whiskers.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Khurram Shahzad ◽  
Mohammad Rehan ◽  
Muhammad Imtiaz Rashid ◽  
Nadeem Ali ◽  
Ahmed Saleh Summan ◽  
...  

High raw material prices and rivalry from the food industry have hampered the adoption of renewable resource-based goods. It has necessitated the investigation of cost-cutting strategies such as locating low-cost raw material supplies and adopting cleaner manufacturing processes. Exploiting waste streams as substitute resources for the operations is one low-cost option. The present study evaluates the environmental burden of biopolymer (polyhydroxyalkanoate) production from slaughtering residues. The sustainability of the PHA production process will be assessed utilising the Emergy Accounting methodology. The effect of changing energy resources from business as usual (i.e., electricity mix from the grid and heat provision utilising natural gas) to different renewable energy resources is also evaluated. The emergy intensity for PHA production (seJ/g) shows a minor improvement ranging from 1.5% to 2% by changing only the electricity provision resources. This impact reaches up to 17% when electricity and heat provision resources are replaced with biomass resources. Similarly, the emergy intensity for PHA production using electricity EU27 mix, coal, hydropower, wind power, and biomass is about 5% to 7% lower than the emergy intensity of polyethylene high density (PE-HD). In comparison, its value is up to 21% lower for electricity and heat provision from biomass.


Author(s):  
M. Kurylo ◽  
V. Bala

The purpose of this study is to analyze and systematize criteria by which, in domestic and international practice, the industrial value of coal deposits with small and insignificant reserves is determined. The analysis and systematization of such factors in general for all coal deposits with the definite definition of the most influential characteristics for small stocks are carried out. Mining and geological factors, which are caused by natural characteristics of the deposit and directly related to the concrete object, are determined, and there have been singled out factors concerning the minerals in general or characterizing the external conditions of industrial development of deposits. For coal deposits with insignificant reserves, the criteria that directly affect the most critical parameter - the value of coal reserves and, consequently, the lifetime of the mining enterprise have paramount importance. Such criteria are the quality of coal, which defines the direction of use and its liquidity, the degree of geological study, which expresses the geological risks of reserves confirmation, and the complexity of mining technical conditions that define methods and systems for the reserves disclosure and development. In general, external factors for coal deposits are most affected by the availability of raw material substitutes and market conditions, and coal prices. For deposits with insignificant reserves, prices and possibility of mining, which involves availability of licenses and social permits, may have a greater impact. Industrial significance of deposit with insignificant reserves may appear favorable of all other conditions of development - mining and technical conditions that form low cost of production, coal quality, favorable market conditions for mineral raw materials, localization of the deposit near consumers, etc. At the same time, the main prerequisite for attracting objects with insignificant reserves to exploitation should be their high degree of geological study. Decision about possible industrial significance should be taken after detailed technical and economic calculations.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Deden Jaelani ◽  

Formula milk production companies are faced with an optimal ordering control system. The availability of raw materials is a measure of the performance of the ordering system at a low cost. This research was conducted to determine the optimal order point with a minimum ordering cost. Ordering decision making is considered from company policy because of the budget. The results of this study indicate that the frequency of purchasing raw materials is 9 times the purchase of raw materials in one year period, 12 times a year of policy. The total purchase of raw material inventories was Rp. 48,671,774, and the policy was Rp. 50,765,157.35 per year. The savings in ordering costs amounted to Rp. 2,093,383.35. The reorder point is 5,634 pcs.


2021 ◽  
pp. 252-261

The combustion of fossil fuels results in creating a lot of solid wastes such as fly ash and slag. However, these environmentally unfriendly materials can be used as a raw material for alkali activation – geopolymerization. Although these wastes have been successfully used in industrial production for several decades, its use does not achieve the level of its potential. Today, to achieve a sustainable construction industry, alternative cement has been extensively investigated. Geopolymer (GP) is a kind of material that is obtained from the alkaline activator, and it can be produced from industrial wastes or by-products. The aim of this work was to describe the improvement of mechanical properties of alkali-activated binders – geopolymers made of fly ash and blast furnace slag. The effect of the addition of waste glass in three different values feed into fly ash or GGBFS, and its impact on mechanical properties (compressive and flexural strengths) of geopolymers was examined. The highest value of compressive strength was achieved with 20% waste glass addition to a fly ash sample on 90th day 58,9 MPa. The waste glass was added in the form of broken and crushed glass particles.


The main goal of this project is to provide proof of goods from the start and their path through the supply chain along with preventing duplication and low-cost exploitation of goods. The network between the company and its suppliers can be described as a supply chain to manufacture and distribute a specific product to the final customers. This network encompasses numerous operations, persons, organizations, knowledge and resources. So, in order to helps the costumers and manufactures by bringing the transparency and avoiding the duplication. The Quick Response code (QR) is generated at the final stage of the production by combing the data from the various blocks of data such as from the raw materials to the dealers. This is a web-based application where every entity gets registered. Every raw material, manufactured sub product is to be given unique id and the data regarding that has to be stored in block of data. Everyone is provided with login and an automated unique id are generated at every stage so that all can be combined to obtain a final Quick Response code (QR) which the customer scans by Android application to get the details about the product.


Author(s):  
L.P. Chernyak ◽  
L.I. Melnyk ◽  
N.O. Dorogan ◽  
I.A. Goloukh

This work used a combination of modern physico-chemical research methods with standardized testing of technological and operational properties of raw materials, clinker, cement and compositions with its application. Results over of research of the silicate systems with rice husk and ash-fly as technogenic raw material for making of cement clinker are driven. The features of the chemical-mineralogical composition, phase transformations during burning and astringent properties of material at the use of 42,5-50,5 % industry wastes in composition initial raw material mixtures are shown. The object of the study were raw material mixtures for the production of Portland cement clinker based on the systems of chalk - clay - man-made raw materials and chalk - man-made raw materials. The possibility of replacing exhaustible and non-renewable natural raw materials with a complex of multi-tonnage wastes of agro-industry and heat energy, which meets the objectives of expanding the raw material base of cement production, resource conservation and environmental protection. Peculiarities of phase formation during firing of silicate systems of chalk-polymineral clay and chalk-technogenic raw materials taking into account changes in the quantitative ratio of components, in particular rice husk and ash-removal of thermal power plants are noted.


Sign in / Sign up

Export Citation Format

Share Document