scholarly journals Utilization of Co-Fired Blended Ash and Chopped Basalt Fiber in the Development of Sustainable Mortar

2021 ◽  
Vol 13 (3) ◽  
pp. 1247
Author(s):  
Kunal M. Shelote ◽  
Hindavi R. Gavali ◽  
Ana Bras ◽  
Rahul V. Ralegaonkar

Excessive consumption of cement in construction materials has resulted in a negative impact on the environment. This leads to the need of finding an alternative binder as a sustainable construction material. Different wastes that are rich in aluminosilicates have proved to be a valuable material for alkali-activated product development, which contains zero cement. Alkali-activated products are claimed to be sustainable and cost-effective. In the present study, alkali-activated reinforced masonry mortar was developed using locally available industrial waste (co-fired blended ash—CBA). Appropriate mortar design is one of the key challenges as connections between two structural elements play a significant role in building construction. The mortar designed with suitable fiber reinforcement shall significantly help to enhance the fresh, mechanical, durability, and dynamic properties. Chopped basalt fibers (CBFs) obtained from basalt rock are one of the eco-efficient fibers applied as a reinforcing material. The present study checked the feasibility of novel industrial waste-co-fired blended ash (CBA) in the development of alkali-activated masonry mortar and reinforced alkali-activated mortar. In view of sustainable construction material design, the study elaborated the application of chopped basalt fibers (CBFs) in alkali-activated mortar design. The mortar cubes were cast and tested for various properties with varying percentages of chopped basalt fibers (0.5%, 1%, and 1.5%). The results suggest that developed mortars were able to achieve higher compressive strength (10–18 MPa) and flexural strength (3–3.5 MPa). Further, based on the properties of developed alkali-activated reinforced mortar, masonry prisms were cast and evaluated for the bond strengths (flexural and shear) of masonry. The optimum properties of alkali-activated mortar were found for the mix design of alkali activator to solid ratio of 0.40 and 0.5% CBF percentage. Application of CBF in CBA alkali-activated reinforced masonry mortar proved to be an efficient construction material with no cement.

2021 ◽  
Vol 13 (17) ◽  
pp. 9938
Author(s):  
Nuno Cristelo ◽  
Fernando Castro ◽  
Tiago Miranda ◽  
Zahra Abdollahnejad ◽  
Ana Fernández-Jiménez

The sustainability of resources is becoming a worldwide concern, including construction and building materials, especially with the alarming increase rate in global population. Alternative solutions to ordinary Portland cement (OPC) as a concrete binder are being studied, namely the so-called alkali-activated cements (AAC). These are less harmful to the environment, as lower CO2 emissions are associated with their fabrication, and their mechanical properties can be similar to those of the OPC. The aim of developing alkali-activated materials (AAM) is the maximization of the incorporated recycled materials, which minimises the CO2 emissions and cost, while also achieving acceptable properties for construction applications. Therefore, various efforts are being made to produce sustainable construction materials based on different sources and raw materials. Recently, significant attention has been raised from the by-products of the steelmaking industry, mostly due to their widespread availability. In this paper, ladle slag (LS) resulting from steelmaking operations was studied as the main precursor to produce AAC, combined with phosphating bath sludge—or phosphate sludge (PS)—and aluminium anodising sludge (AS), two by-products of the surface treatment of metals, in replacement rates of 10 and 20 wt.%. The precursors were activated by two different alkaline solutions: a combination of commercial sodium hydroxide and sodium silicate (COM), and a disposed solution from the cleaning of aluminium extrusion steel dies (CLE). This study assesses the influence of these by-products from the steelmaking industry (PS, AS and CLE) on the performance of the alkali-activated LS, and specifically on its fresh and hardened state properties, including rheology, heat of hydration, compressive strength and microstructure and mineralogy (X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infra-red. The results showed that the CLE had no negative impact on the strength of the AAM incorporating PS or/and AS, while increasing the strength of the LS alone by 2×. Additionally, regardless of the precursor combination, the use of a commercial activator (COM) led to more fluid pastes, compared with the CLE.


Author(s):  
Md. Mashfiqul Islam ◽  
Ahmed A. Gheni ◽  
Mohamed A. ElGawady

<p>The era of research on fly ash based Zero-Cement (ZC) containing alkali activated geopolymer mortar and concrete has already begun. By replacing 100% of cement which is the higher carbon footprint material and also by maintaining a steady level on eco-system without causing severe environmental damage or exhausting natural resources, geopolymer technology is on the way to be the most popular sustainable construction material. However, the mixing mechanism of geopolymer is very difficult using the liquid alkaline activators which are hazardous as well as difficult to handle in large construction works at sites. As a result, the development of producing one-part geopolymer or “just add water” process similar to ordinary</p><p>Portland cement (OPC) construction, is necessary for the promotion of this green and sustainable</p><p>construction material to the society. To this end, two different sources of Class C fly ash (FA) from Missouri State, USA are used in this study to investigate the mechanical as well as the fresh properties of ZC mortar and concrete. In this study, the dry sodium hydroxide (SH) pellets and sodium silicate (SS) powder are used as solid alkaline activators. Three different curing systems, e.g. ambient, oven and steam curing are employed in this study and corresponding strength gains are evaluated. A significant enhancement of the compressive strength was achieved by the addition of 1.9 mass% of sucrose (sugar) with respect to FA in the mix after curing at the elevated temperature.</p>


2021 ◽  
Vol 11 (9) ◽  
pp. 1439-1452
Author(s):  
Kaiwei Liu ◽  
Wanyu Xu ◽  
Daosheng Sun ◽  
Jinhui Tang ◽  
Aiguo Wang ◽  
...  

The over exploitation of stone quarries, the generation of construction and demolition (C&D) waste, and the steady increase in the cost of preparing additional landfill space have caused great challenges to the environment and economy. Recycled aggregate concrete (RAC), as one of the sustainable construction material, has become a research hotspot and has received widespread attention. However, the formation of weak interface transition zone (ITZ) which caused by the existence of residual old mortar will exert a negative impact on the performance of RAC. Therefore, various treatments have been proposed to enhance the properties of the residual old mortar, including mechanical treatment, soaking, carbonation and so on. And it has been proved that carbonation is an effective and sustainable way to both improve the water absorption of RA and strengthen the ITZ of RAC. So, firstly, this article is devoted to reviewing the current research on the application of carbonized RA to RAC, focusing on two parts: (1) RA: the changes of physical properties under different conditions; (2) RAC: the microstructure, workability, mechanical properties and durability of the concrete with carbonized RA. Thereafter, it is known from the summarized literatures that carbonation can improve physical properties of RA and the optimal effect can be achieved by adjusting carbonation conditions. RAC with carbonized RA has denser both new and old ITZs, the microstructure, performance of it are also improved. Finally, this work may provide a reference for the research of carbonation and the application of RA in engineering in the future.


2021 ◽  
Vol 11 (11) ◽  
pp. 4754
Author(s):  
Assia Aboubakar Mahamat ◽  
Moussa Mahamat Boukar ◽  
Nurudeen Mahmud Ibrahim ◽  
Tido Tiwa Stanislas ◽  
Numfor Linda Bih ◽  
...  

Earth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE).


2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


2021 ◽  
pp. 105678952199873
Author(s):  
Mehdi Abdollahi Azghan ◽  
F Bahari-Sambran ◽  
Reza Eslami-Farsani

In the present study, the effect of thermal cycling and stacking sequence on the tensile behavior of fiber metal laminate (FML) composites containing glass and basalt fibers was investigated. To fabricate the FML samples, fibers reinforced epoxy composite were sandwiched between two layers of 2024-T3 aluminum alloy sheet. 55 thermal cycles were implemented at a temperature range of 25–115°C for 6 min. The tensile tests were carried out after the thermal cycling procedure, and the results were compared with non-thermal cycling specimens. Scanning electron microscopy (SEM) was employed for the characterization of the damage mechanisms. The FMLs containing four basalt fibers’ layers showed higher values of tensile strength, modulus, and energy absorption. On the other hand, the lowest strength and fracture energy were found in the asymmetrically stacked sample containing basalt and glass fibers, due to weak adhesion between composite components (basalt and glass fibers). The lowest tensile modulus was found in the sample containing glass fibers that was due to the low modulus of the glass fibers compared to basalt fibers. In the case of the samples exposed to thermal cycling, the highest and the lowest thermal stabilities were observed in basalt fibers samples and asymmetrically stacked samples, respectively. In accordance with the experimental results, a non-linear damage model using the Weibull function and tensile modulus was employed to predict the stress-strain relationship. The simulated strain–strain curves presented an appropriate agreement with the experimental results.


2011 ◽  
Vol 243-249 ◽  
pp. 6339-6343
Author(s):  
Guang Bin Wang ◽  
Gui You He ◽  
Li Bian

Due to the great negative impact, the construction industry needs to undergo a paradigm shift from traditional construction to sustainable construction. To reach the goal of sustainable development, the construction industry needs to intensify its efforts to move to a knowledge intensive mode. Based on the analysis of e-Cognos and the concept of ontology, this paper proposes that e-Cognos ontology can be applied in the development of sustainable construction process ontology, which is a key part of knowledge management system (KMS). Following this, the application process of ontology-based KMS is analyzed using IDEF0 modeling method. Finally, this paper analyzes interorganizational collaboration model in sustainable project.


2011 ◽  
Vol 332-334 ◽  
pp. 1937-1940 ◽  
Author(s):  
Wei Wei Hu ◽  
Hua Wu Liu ◽  
Dang Feng Zhao ◽  
Zong Bin Yang

Basalt fiber is a novel high-performance inorganic material, recently has been well received as a reinforcement in China. However, the applications in civil engineering have been rather limited. The chemical compositions, the characteristics of basalt fibers, and the typical products of basalt, including chopped yarn of basalt fiber, basalt fiber geo-textiles and basalt fiber reinforced polymer, were introduced.The advantages of basalt fibers as a reinforcement of concrete were explored in comparison with the commonly used reinforcing fibers, which indicates that basalt fiber is the most promising reinforcement material for concrete and will significantly benefit civil construction industries in the future.


2014 ◽  
Vol 66 (12) ◽  
pp. 618-626 ◽  
Author(s):  
Luís Filipe Brandão Ferreira ◽  
Hugo Sérgio Sousa Costa ◽  
Inês Isabel Antunes Barata ◽  
Eduardo Nuno Brito Santos Júlio ◽  
Paulo Maranha Nunes Tiago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document