scholarly journals Rice Husk Compost Production and Use in Mitigating Ammonia Volatilization from Urea

2021 ◽  
Vol 13 (4) ◽  
pp. 1832
Author(s):  
Latifah Omar ◽  
Osumanu Haruna Ahmed ◽  
Mohamadu Boyie Jalloh ◽  
Nik Muhamad Abdul Majid

Using value-added products such as compost in farming systems could enable optimization of nitrogen (N) fertilizers whose world-wide demand is on the increase. The objectives of this study were to: (i) produce compost through co-composting rice husk (RH) with chicken dung slurry (CDS), chicken feed, and molasses, (ii) determine the effects of optimum rate of urea and RH compost on minimizing ammonia (NH3) volatilization, and (iii) determine total N, exchangeable ammonium (NH4+), and available nitrate (NO3−) retained in soil following co-application of urea and RH compost. Compost was produced for 60 days by mixing RH, CDS, chicken feed, and molasses at a ratio of 20:1:1:1. The color of RH compost was dark brown and had significant amounts of major nutrients such as N (1.15%), phosphorus (3101 mg kg−1), potassium (2038 mg kg−1), calcium (863 mg kg−1), magnesium (276 mg kg−1), organic matter (OM) (60.67%), organic carbon (35.17%), and humic acids (5.87%). The C/N ratio of the RH compost was 30. The electrical conductivity and pH of the RH compost were 2.79 µS cm−1 and 6.55, respectively, and they were not phytotoxic because paddy seeds were successfully germinated in all of the RH compost extractants. The high cation exchange capacity (CEC) of the RH compost (100.67 cmolc kg−1) at the end of composting was one of the determinant factors that controlled NH3 loss from urea. The effectiveness of the RH compost in minimizing urea-N loss was determined using a close-dynamic air flow system. The RH compost significantly minimized NH3 volatilization because of the high affinity of the RH compost for NH4+. An attestation of this reaction was that the high negative charges due to high CEC and OM of the RH compost temporarily protected NH4+ from being transformed into NH3 gas. Further evidence is the higher soil total N and exchangeable NH4+ for the treatments with RH compost than with urea alone. High quality compost can be produced from RH to reduce urea-N from being lost from urea. For the optimum rate, co-application of 60 g RH compost and 2.9 g urea per trough is recommended to mitigate NH3 volatilization instead of the existing practice (7.3 g urea alone per trough).

Author(s):  
Suryaprakash Shailendrakumar Shukla ◽  
Ramakrishna Chava ◽  
Srinivas Appari ◽  
A Bahurdeen ◽  
Bhanu Vardhan Reddy Kuncharam

1990 ◽  
Vol 38 (2) ◽  
pp. 145-158 ◽  
Author(s):  
J. van der Molen ◽  
H.G. van Faassen ◽  
M.Y. Leclerc ◽  
R. Vriesema ◽  
W.J. Chardon

Cattle slurry was surface-applied to bare soil in two experiments in September-November 1987, while in April-May 1988 two experiments were carried out in which the slurry was mixed with the upper 6 cm of the soil with a cultivator immediately after spreading. The 1987 experiments both lasted 18 days, the 1988 experiments 9 days. A micrometeorological technique, which did not disturb the dynamics of the air flow, was used to measure NH3 volatilization. Volatilization losses were also determined indirectly from mineral-N contents of soil-slurry samples collected at intervals after application. Diurnal fluctuations in the NH3 flux occurred throughout the experimental period, with maxima around midday and minima at midnight. The magnitude of the daily flux values decreased with time. The amounts of N lost through volatilization from surface-applied cattle slurry were 18 and 33% of the total N, resp., during the first 9 days, corresponding to 32 and 67% of the ammoniacal N applied with the slurry. Volatilization was negligible after day 9. Incorporation of the slurry into the soil considerably decreased the loss of N through volatilization: volatile losses of N after 9 days amounted to 6 and 7% of the total N, which corresponds to 11 and 16% of the ammoniacal N applied with the slurry. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2018 ◽  
Vol 28 (5) ◽  
pp. 1681-1684
Author(s):  
Georgi Toskov ◽  
Ana Yaneva ◽  
Stanko Stankov ◽  
Hafize Fidan

The European Commission defines the bioeconomy as "the production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, bio-based products and bioenergy. Its sectors and industries have strong innovation potential due to their use of a wide range of sciences, enabling and industrial technologies, along with local and implied knowledge." The Bulgarian food industry faces a lot of challenges on the local and national level, which have direct influence on the structure of the production companies. Most of the enterprises from the food sector produce under foreign brands in order to be flexible partners to the large Bulgarian retail chains. The small companies from the food sector are not able to develop as an independent competitive producer on the territory of their local markets. This kind of companies rarely has a working strategy for positioning on new markets. In order to consolidate their already built positions for long period of time, the producers are trying to optimize their operations in a short term. However, the unclear vision of the companies for the business segment does not allow them to fully develop. Tourism in Bulgaria is a significant contributor to the country's economy.


2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


Sign in / Sign up

Export Citation Format

Share Document