scholarly journals Experimental and Informational Modeling Study on Flexural Strength of Eco-Friendly Concrete Incorporating Coal Waste

2021 ◽  
Vol 13 (13) ◽  
pp. 7506
Author(s):  
Farshad Dabbaghi ◽  
Maria Rashidi ◽  
Moncef L. Nehdi ◽  
Hamzeh Sadeghi ◽  
Mahmood Karimaei ◽  
...  

Construction activities have been a primary cause for depleting natural resources and are associated with stern environmental impact. Developing concrete mixture designs that meet project specifications is time-consuming, costly, and requires many trial batches and destructive tests that lead to material wastage. Computational intelligence can offer an eco-friendly alternative with superior accuracy and performance. In this study, coal waste was used as a recycled additive in concrete. The flexural strength of a large number of mixture designs was evaluated to create an experimental database. A hybrid artificial neural network (ANN) coupled with response surface methodology (RSM) was trained and employed to predict the flexural strength of coal waste-treated concrete. In this process, four influential parameters including the cement content, water-to-cement ratio, volume of gravel, and coal waste replacement level were specified as independent input variables. The results show that concrete incorporating 3% recycled coal waste could be a competitive and eco-efficient alternative in construction activities while attaining a superior flexural strength of 6.7 MPa. The RSM-modified ANN achieved superior predictive accuracy with an RMSE of 0.875. Based on the experimental results and model predictions, estimating the flexural strength of concrete incorporating waste coal using the RSM-modified ANN model yielded superior accuracy and can be used in engineering practice to save the effort, cost, and material wastage associated with trial batches and destructive laboratory testing while producing mixtures with enhanced flexural strength.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2390 ◽  
Author(s):  
Olalekan Alade ◽  
Dhafer Al Shehri ◽  
Mohamed Mahmoud ◽  
Kyuro Sasaki

The viscosity data of two heavy oil samples X and Y, with asphaltene contents 24.8% w/w and 18.5% w/w, respectively, were correlated with temperature and pressure using empirical models and the artificial neural network (ANN) approach. The viscosities of the samples were measured over a range of temperatures between 70 °C and 150 °C; and from atmospheric pressure to 7 MPa. It was found that the viscosity of sample X, at 85 °C and atmospheric pressure (0.1 MPa), was 1894 cP and that it increased to 2787 cP at 7 MPa. At 150 °C, the viscosity increased from 28 cP (at 0.1 MPa) to 33 cP at 7 MPa. For sample Y, the viscosity at 70 °C and 0.1 MPa increased from 2260 cP to 3022 cP at 7 MPa. At 120 °C, the viscosity increased from 65 cP (0.1 MPa) to 71 cP at 7 MPa. Notably, using the three-parameter empirical models (Mehrotra and Svrcek, 1986 and 1987), the correlation constants obtained in this study are very close to those that were previously obtained for the Canadian heavy oil samples. Moreover, compared to other empirical models, statistical analysis shows that the ANN model has a better predictive accuracy (R2 ≈ 1) for the viscosity data of the heavy oil samples used in this study.


Manufacturing ◽  
2002 ◽  
Author(s):  
Hazim El-Mounayri ◽  
Vipul Tandon

An Artificial Neural Network (ANN) model is developed to accurately predict the instantaneous cutting forces in flat end milling. A unique frequency domain approach is presented and is seen to simulate instantaneous cutting forces reasonably well. A set of eight input variables is chosen to represent the machining conditions and frequency domain parameters of the cutting force signal are generated. Three input parameters are varied, namely Feed, Speed and Depth of Cut. Four output parameters are suggested as a sufficient set to adequately reproduce the instantaneous cutting forces. Exhaustive experimentation is conducted to collect data (consisting of Fx, Fy, and Fz) to train and validate the model.


2008 ◽  
Vol 35 (7) ◽  
pp. 699-707 ◽  
Author(s):  
Halil Ceylan ◽  
Kasthurirangan Gopalakrishnan ◽  
Sunghwan Kim

The dynamic modulus (|E*|) is one of the primary hot-mix asphalt (HMA) material property inputs at all three hierarchical levels in the new Mechanistic–empirical pavement design guide (MEPDG). The existing |E*| prediction models were developed mainly from regression analysis of an |E*| database obtained from laboratory testing over many years and, in general, lack the necessary accuracy for making reliable predictions. This paper describes the development of a simplified HMA |E*| prediction model employing artificial neural network (ANN) methodology. The intelligent |E*| prediction models were developed using the latest comprehensive |E*| database that is available to researchers (from National Cooperative Highway Research Program Report 547) containing 7400 data points from 346 HMA mixtures. The ANN model predictions were compared with the Hirsch |E*| prediction model, which has a logical structure and a relatively simple prediction model in terms of the number of input parameters needed with respect to the existing |E*| models. The ANN-based |E*| predictions showed significantly higher accuracy compared with the Hirsch model predictions. The sensitivity of input variables to the ANN model predictions were also examined and discussed.


Flooding is a major problem globally, and especially in SuratThani province, Thailand. Along the lower Tapeeriver in SuratThani, the population density is high. Implementing an early warning system can benefit people living along the banks here. In this study, our aim was to build a flood prediction model using artificial neural network (ANN), which would utilize water and stream levels along the lower Tapeeriver to predict floods. This model was used to predict flood using a dataset of rainfall and stream levels measured at local stations. The developed flood prediction model consisted of 4 input variables, namely, the rainfall amounts and stream levels at stations located in the PhraSeang district (X.37A), the Khian Sa district (X.217), and in the Phunphin district (X.5C). Model performance was evaluated using input data spanning a period of eight years (2011–2018). The model performance was compared with support vector machine (SVM), and ANN had better accuracy. The results showed an accuracy of 97.91% for the ANN model; however, for SVM it was 97.54%. Furthermore, the recall (42.78%) and f-measure (52.24%) were better for our model, however, the precision was lower. Therefore, the designed flood prediction model can estimate the likelihood of floods around the lower Tapee river region


2008 ◽  
Vol 32 (3-4) ◽  
pp. 523-536 ◽  
Author(s):  
Hazim El Mounayri ◽  
M. Affan Badar ◽  
Gustavo A. Rengifo

The quality, productivity and safety of machining can be significantly improved through the optimization of cutting conditions. The first step in achieving such an objective is the development of accurate and reliable models for predicting the critical process parameters. In this paper, an innovative Artificial Neural Network (ANN) model that predicts both cutting force and surface roughness in end milling is developed and validated. A set of five input variables is selected to represent the machining conditions while twelve quantities representing two key process parameters, namely, cutting force and surface roughness, form the variables of the network output. Full factorial design of experiments is used to generate data for both training and validation. Successful training of the neural network is demonstrated through comparison of simulated and experimental results for four different output variables, namely cutting force, surface roughness, feed marks, and tooth passing frequency. The predictive ability of the model is verified experimentally by comparing simulated output variables with their experimental counterparts. A good agreement is observed.


2014 ◽  
Vol 20 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Marina Marinelli ◽  
Sergios Lambropoulos ◽  
Kleopatra Petroutsatou

Purpose – The purpose of this paper is to present an artificial neural network (ANN) model that predicts earthmoving trucks condition level using simple predictors; the model's performance is compared to the respective predictive accuracy of the statistical method of discriminant analysis (DA). Design/methodology/approach – An ANN-based predictive model is developed. The condition level predictors selected are the capacity, age, kilometers travelled and maintenance level. The relevant data set was provided by two Greek construction companies and includes the characteristics of 126 earthmoving trucks. Findings – Data processing identifies a particularly strong connection of kilometers travelled and maintenance level with the earthmoving trucks condition level. Moreover, the validation process reveals that the predictive efficiency of the proposed ANN model is very high. Similar findings emerge from the application of DA to the same data set using the same predictors. Originality/value – Earthmoving trucks’ sound condition level prediction reduces downtime and its adverse impact on earthmoving duration and cost, while also enhancing the maintenance and replacement policies effectiveness. This research proves that a sound condition level prediction for earthmoving trucks is achievable through the utilization of easy to collect data and provides a comparative evaluation of the results of two widely applied predictive methods.


2020 ◽  
Vol 15 (2) ◽  
pp. 170-180
Author(s):  
Mahsa Bakhshaei ◽  
Hassan Ahmadi ◽  
Baharak Motamedvaziri ◽  
Payam Najafi

Many types of physical models have been developed for runoff estimation with successful results. However, accurate runoff estimation remains a challenging problem owing to the lack of field data and the complexity of its hydrological process. In this paper, a machine learning method for runoff estimation is presented as an alternative approach to the physical model. Various types of input variables and Artificial Neural Network (ANN) architectures were examined in this study. Results showed that a two-layer network with the tansig activation function and the Levenberg–Marquardt learning algorithm had the best performance. For this architecture, the most effective input vector consists of a catchment perimeter, canal length, slope, runoff coefficient, and rainfall intensity. However, results of multivariate analysis of variance indicated the significant interaction effect of input data and the ANN architecture. Thus, to create a suitable ANN model for runoff estimation, a systematic determination of the input vector is necessary.


Author(s):  
Chungkuk Jin ◽  
HanSung Kim ◽  
JeongYong Park ◽  
MooHyun Kim ◽  
Kiseon Kim

Abstract This paper presents a method for detecting damage to a gillnet based on sensor fusion and the Artificial Neural Network (ANN) model. Time-domain numerical simulations of a slender gillnet were performed under various wave conditions and failure and non-failure scenarios to collect big data used in the ANN model. In training, based on the results of global performance analyses, sea states, accelerations of the net assembly, and displacements of the location buoy were selected as the input variables. The backpropagation learning algorithm was employed in training to maximize damage-detection performance. The output of the ANN model was the identification of the particular location of the damaged net. In testing, big data, which were not used in training, were utilized. Well-trained ANN models detected damage to the net even at sea states that were not included in training with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document