scholarly journals Emission Characteristics of Hazardous Air Pollutants from Medium-Duty Diesel Trucks Based on Driving Cycles

2021 ◽  
Vol 13 (14) ◽  
pp. 7834
Author(s):  
Sungwoon Jung ◽  
Sunmoon Kim ◽  
Taekho Chung ◽  
Heekyoung Hong ◽  
Seunghwan Lee ◽  
...  

Studies on the characteristics of hazardous air pollutants (HAPs) in the emissions of medium-duty diesel trucks are significantly insufficient compared to those on heavy-duty trucks. This study investigated the characteristics of regulated pollutants and HAPs, such as volatile organic compounds (VOCs), aldehydes, and polycyclic aromatic hydrocarbons (PAHs), and estimated non-methane hydrocarbon (NMHC) speciation in the emissions of medium-duty diesel trucks. Ten medium-duty diesel trucks conforming to Euros 5 and 6 were tested for four various driving cycles (WLTC, NEDC, CVS-75, and NIER-9) using a chassis dynamometer. In an urban area such as Seoul, CO and NMHC emissions were increased because of its longer low-speed driving time. NOx emissions were the highest in the high-speed phase owing to the influence of thermal NOx. PM emissions were almost not emitted because of the DPF installation. Alkanes dominated non-methane volatile compound (NMVOC) emissions, 36–63% of which resulted from the low reaction of the diesel oxidation catalyst. Formaldehyde emissions were the highest for 35–53% among aldehydes irrespective of driving cycles. By sampling the particle-phase of PAHs, we detected benzo(k)fluoranthene and benzo(a)pyrene and estimated the concentrations of the gas-phase PAHs with models to obtain the total PAH concentrations. In the particle portion, benzo(k)fluoranthene and benzo(a)pyrene were over 69% and over 91%, respectively. The toxic equivalency quantities of benzo(k)fluoranthene and benzo(a)pyrene from NIER-9 (cold) for both Euro 5 and Euro 6 vehicles were more than five times higher than those of NIER (hot) and NEDC. In the case of NMHC speciation, formaldehyde emissions were the highest for 10–45% in all the driving cycles. Formaldehyde and benzene must be controlled in the emissions of medium-duty diesel trucks to reduce their health threats. The results of this study will aid in establishing a national emission inventory system for HAPs of mobile sources in Korea.

Author(s):  
Sungwoon Jung ◽  
Sunmoon Kim ◽  
Taekho Chung ◽  
Heekyoung Hong ◽  
Seunghwan Lee ◽  
...  

Studies on the characteristics of hazardous air pollutants (HAPs) in the emissions of medium-duty diesel trucks are significantly insufficient compared to that on heavy-duty trucks. This study investigates the characteristics of regulated pollutants and HAPs such as volatile organic compounds (VOCs), aldehydes, and polycyclic aromatic hydrocarbons (PAHs), and estimates non-methane hydrocarbon (NMHC) speciation in the emissions of medium-duty diesel trucks. Ten medium-duty diesel trucks conforming to Euros 5 and 6 were tested for worldwide harmonized light duty driving test cycle (WLTC), new European driving cycle (NEDC), constant volume sampler (CVS)-75, and National Institute of Environmental Research (NIER)-9 using a chassis dynamometer. CO and NMHC emissions were the highest in the NEDC because of its longer low-speed driving time. NOx emissions were the highest in WLTC owing to the influence of thermal NOx in the high-speed phase. Alkanes dominated non-methane volatile compound (NMVOC) emissions owing to the low reaction of the diesel oxidation catalyst. After-treatment system, driving, and engine conditions influenced the individual components of NMVOC emissions. Formaldehyde emissions were the highest among aldehydes irrespective of driving cycles. By sampling the particle-phase of PAHs, we detected benzo(k)fluoranthene and benzo(a)pyrene and estimated the concentrations of the gas-phase PAHs with models to obtain the total PAH concentrations. The toxic equivalency quantities of benzo(k)fluoranthene and benzo(a)pyrene from NIER-9 (cold) for both Euro 5 and Euro 6 vehicles were more than five times higher than that of NIER (hot) and NEDC. In the case of NMHC speciation, formaldehyde emissions were the highest in all the driving cycles. Formaldehyde and benzene must be controlled in the emissions of medium-duty diesel trucks to reduce their health threats. The results of this study will aid in establishing a national emission inventory system for HAPs of mobile sources in Korea.


Author(s):  
Min-Ji Kim ◽  
Kyung-Min Baek ◽  
Jong-Bae Heo ◽  
Jang-Pyo Cheong ◽  
Sung-Ok Baek

AbstractWe conducted ambient monitoring of various hazardous air pollutants (HAPs) for 2 years (2013-2015) in two adjacent Korean cities in a megacity area: Seoul and Incheon. Measured HAPs included volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs). The objectives of this study were to evaluate the spatiotemporal variations of HAPs, to prioritize HAPs based on health risks, to identify sources using a receptor-based model, and to estimate source-specific risks. Overall, the HAP levels in Incheon were higher than those in Seoul. The concentrations of combustion-origin HAPs, such as PAHs and some HMs, were significantly higher during the heating period than during the non-heating period. However, most VOCs exhibited an opposite trend. Benzo[a]pyrene showed the highest cancer risk in both cities, followed by formaldehyde, arsenic, and benzene; trichloroethylene was the only species that exceeded the hazard quotient of 1. Cumulative cancer risks were 2.0 × 10-4 in Seoul and 2.7 × 10-4 in Incheon. Major sources and their contributions to each HAP concentration were estimated by positive matrix factorization modeling. Based on source-specific risk assessments, we suggest that both cities should give high priority to the control of traffic pollution and the supply of cleaner fuels in non-residential sectors. Reducing carbonyl concentrations in Seoul and industrial emissions in Incheon is also necessary. Establishing new ambient standards for benzo[a]pyrene and formaldehyde is worth considering as a long-term measure. This study provides scientific information on the occurrence, health risks, and sources of various HAPs in large urban areas.


Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Edward Chappell ◽  
Richard Burke

This article proposes a method based on the Kalman filter to improve the accuracy of the CO2 measurement in driving cycles such as worldwide harmonized light vehicles test cycles or real driving cycles which are inherently subject to a loss in accuracy due to the dynamic limitations of the CO2 analysers. The information from the analyser is combined with the electronic control unit estimation of the fuel injection. The characteristics of diesel engines and, in particular, the high efficiency of the combustion process and the diesel oxidation catalyst allows to compute the CO2 emissions from the fuel consumption estimation of the electronic control unit by applying the carbon balance method assuming negligible HC and CO emissions. Then, the assessment of the CO2 analyser response time and accuracy allows to pose an estimation problem that can be solved by a Kalman filter. The application of the method to different driving cycles shows that analyser dynamic limitations may lead to an overestimation of the CO2 figures that can reach 4% in highly dynamic tests such as the worldwide harmonized light vehicles test cycles. The technique thus has further potential application to replicating real driving cycles on the chassis dynamometer for real driving emission testing.


2018 ◽  
Vol 20 (2) ◽  
pp. 389-398

In the present investigation, an attempt for the reduction of six hazardous air Pollutants (HAPs) from diesel exhaust by different blends of diesel and biodiesel has been made. The synthesis of biodiesel has been done from Jetrofa, Linseed Castor and Karanja oils which are commonly used in the Indian market. Blending of diesel with biodiesel was done in different ratios (20 to 40 %) for the estimation of carcinogenic HAPs from the exhaust of a Honda engine (EBK 2010AC Model). The order of HAPs emission from engine exhaust by using diverse blends were Diesel>Jatropha-diesel>Linseed-diesel>Castor-diesel> Karanja-diesel. The maximum reduction of HAPs was established in the following ratio 40% (Biodiesel):60% (Diesel). B(a)P and Chrysene were the two individual aromatic hydrocarbons (AHCs) found in higher concentration in almost all blending fuels, ranging between 50 ng/µl to 101.1 ng/µl. The emission of almost all AHCs reduces by Blending of Diesel with Biodiesel. This was the first comprehensive information which showed the reduction of carcinogenic pollutants from diesel exhaust.


Author(s):  
Eilhann Kwon ◽  
Marco J. Castaldi

This investigation has been initiated to characterize the thermal decomposition of waste tires with Thermo-Gravimetric Analysis (TGA) in various atmospheres ranging in oxygen content; 100% N2, 7%, 21% (air) and 30% O2. Chemical analysis focusing on light hydrocarbons, substituted aromatics, and polycyclic aromatic hydrocarbon has been done qualitatively and quantitatively to understand the mechanism of thermal degradation of scrap tires and hazardous air pollutants such as PAH. The release of chemicals from scrap tires has been determined experimentally using Gas Chromatography/Mass Spectroscopy (GC/MS) coupled to TGA unit. The identities and absolute concentrations of over 50 major and minor species have been established. Significant volatile organic carbons (VOC) including substituted aromatics and PAH were observed between 300°C and 500°C. In addition, significant black carbon residual was observed in most environments except air and oxygen enhanced atmospheres and suggested not only the potential recovery of black carbon out of feedstock, but also the possibility of combined thermal treatment between combustion and gasification. These measurements supply information on the identities and levels of hazardous air pollutants, and provide useful new data for the development and validation of detailed reaction mechanisms describing their origin and fate. Finally, while high contents of VOC show significant potential to be utilized as an unconventional solid fuel, they also tend to generate hazardous pollutants.


Author(s):  
M. Assad ◽  
V. V. Grushevski ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in the gasoline combustion products emitted into the atmosphere by internal combustion engines (ICE) has been measured using the gas chromatography method. The concentrations of PAHs in the exhaust gases sampled behind a catalytic converter has been determined when the ICE operates in five modes: idle mode, high speed mode, load mode, ICE cold start mode (engine warm-up) and transient mode. Using 92 RON, 95 RON and 98 RON gasoline the effect of the octane number of gasoline on the PAHs content in the exhaust gases has been revealed. The concentration of the most carcinogenic component (benzo(α)pyrene) in the exhaust gases behind a catalytic converter significantly exceeds a reference value of benzo(α)pyrene in the atmospheric air established by the WHO and the EU for ICE in the load mode.


Sign in / Sign up

Export Citation Format

Share Document