scholarly journals Study on the Influence of EGR on the Combustion Performance of Biofuel Diesel at Different Ambient Simulated Pressures

2021 ◽  
Vol 13 (14) ◽  
pp. 7862
Author(s):  
Zefei Tan ◽  
Jun Wang ◽  
Wengang Chen ◽  
Lizhong Shen ◽  
Yuhua Bi

In order to explore the influence of EGR at different altitudes on the performance of biofuel diesel engines, a comparative experimental study is conducted with the biodiesel–ethanol–diesel B15E5 (biodiesel with 15% volume fraction, ethanol with 5% volume fraction and diesel with 80% volume fraction) mixed fuel at different EGR rate and different atmospheric pressure. The experimental results show that diesel engine power performance and economy goes up with the increase of atmospheric pressure, and it decreases with the increase of EGR rate. At 2200 rpm, the improvement range of medium and high diesel engine load is 1.5–6.8%, and that of 1800 rpm is 2.8–11.7%. At the same atmospheric pressure, with the increase of EGR rate, the power and economy turn worse. The peak combustion pressure and heat release rate both increased with the increase of the atmospheric pressure at full load. At the same atmospheric pressure, peak combustion pressure and peak heat release rate fall with the increase of EGR rate. At part load, firstly, smoke emissions fall with the increase of the load and then rise. As the atmospheric pressure goes up, the smoke emissions show a downward trend, with a decline of 6.6–40%, while the NOx emissions show a rising trend, with an increase of 1.2–8.5%. At the same atmospheric pressure, the smoke emission increase with the increase of EGR rate by 9–12.5%, and the NOx emissions increase with the decrease of EGR rate by 2.5–6.8%. The HC and CO Emissions decrease with the increase of atmospheric pressure. HC emission decreases by 9.3–19.1%, and CO emission decreases by 2.9–16.6%. At the same atmospheric pressure, the HC emission decreases with the increase of the EGR rate by 3.3–4.5% at medium and high loads, and the CO emission increases with the EGR rate by 3.1–4.5%.

Author(s):  
Dong Wang ◽  
Chao Zhang

A prediction model, which describes linear relationship between the nitrogen oxides (NOx) emissions and the in-cylinder heat release rate in a direct-injection diesel engine, was developed through numerical simulations. A modified KIVA-3 V code was used to calculate NOx formations and to conduct heat release analyses in a direct-injection diesel engine under different operating conditions. The numerical simulation results indicated that the NOx formation amount was related to both the magnitude and the timing of the peak heat release rate in each engine cycle. Based on the above observations, a control-oriented dynamic NOx model was constructed and then implemented into a feedback emission control system on a small diesel engine. A new parameter—combustion acceleration—was proposed in this research to describe the intensity of the premixed combustion. Experimental work was also conducted to measure the real-time in-cylinder pressure at each crank-angle when the engine was running and the heat release rate was calculated instantaneously to control an exhaust gas recirculation (EGR) valve. The experimental results showed that the proposed NOx prediction model was effective in controlling NOx emissions under high rpm conditions.


Author(s):  
Jianjun Zhu ◽  
Peng Li ◽  
Yufeng Xie ◽  
Xin Geng

The effects of compression ratio and fuel delivery advance angle on the combustion and emission characteristics of premixed methanol charge induced ignition by Fischer Tropsch diesel engine were investigated using a CY25TQ diesel engine. In the process of reducing the compression ratio from 16.9 to 15.4, the starting point of combustion is fluctuating, the peak of in-cylinder pressure and the maximum pressure increase rate decrease by 44.5% and 37.7% respectively. The peak instantaneous heat release rate increases by 54.4%. HC and CO emissions are on a rising trend. NOx and soot emissions were greatly decreased. The soot emission has the biggest drop of 50%. Reducing the fuel delivery advance angle will make the peak of in-cylinder pressure and the peak of pressure rise rate increase while the peak of heat release rate decreases. The soot emission is negatively correlated with the fuel delivery advance angle. When the fuel delivery advance angle is 16° CA, the soot emissions increased the most by 130%.


2019 ◽  
Vol 969 ◽  
pp. 451-460
Author(s):  
Manpreet Singh ◽  
Mohd Yunus Sheikh ◽  
Dharmendra Singh ◽  
P. Nageswara Rao

The rapid rise in energy requirement and problem regarding atmosphere pollutions, renewable biofuels are the better alternative choice for the internal combustion engine to partially or totally replace the pollutant petroleum fuel. In the present work, thumba (Citrullus colocynthis) non-edible vegetable oil is used for the production of biodiesel and examine its possibility as diesel engine fuel. Transesterification process is used to produce biodiesel from thumba non-edible vegetable oil. Thumba biodiesel (TBD) is used to prepare five different volume concentration (blends) with neat diesel (D100), such as TBD5, TBD15, TBD25, TBD35 and TBD45 to run a single cylinder diesel engine. The diesel engine's combustion parameter such as in-cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, and mass fraction burnt analyzed through graphs and compared all thumba biodiesel blends result with neat diesel fuel. The mass fraction burnt start earlier for thumba biodiesel blends compared to diesel fuel because of less ignition delay while peak in-cylinder pressure, maximum rate of pressure rise, maximum net heat release rate, maximum cumulative heat release, and maximum mean gas temperature has found decreased results up to 1.93%, 5.53%, 4.11%, 4.65%, and 1.73% respectively for thumba biodiesel.


Author(s):  
Joseph Gerard T. Reyes ◽  
Edwin N. Quiros

The combustion duration in an internal combustion engine is the period bounded by the engine crank angles known as the start of combustion (SOC) and end of combustion (EOC), respectively. This period is essential in analysis of combustion for the such as the production of exhaust emissions. For compression-ignition engines, such as diesel engines, several approaches were developed in order to approximate the crank angle for the start of combustion. These approaches utilized the curves of measured in-cylinder pressures and determining by inspection the crank angle where the slope is steep following a minimum value, indicating that combustion has begun. These pressure data may also be utilized together with the corresponding cylinder volumes to generate the apparent heat release rate (AHRR), which shows the trend of heat transfer of the gases enclosed in the engine cylinder. The start of combustion is then determined at the point where the value of the AHRR is minimum and followed by a rapid increase in value, whereas the EOC is at the crank angle where the AHRR attains a flat slope prior to the exhaust stroke of the engine. To verify the location of the SOC, injection line pressures and fuel injection timing are also used. This method was applied in an engine test bench using a four-cylinder common-rail direct injection diesel engine with a pressure transducer installed in the first cylinder. Injector line pressures and fuel injector voltage signals per engine cycle were also recorded and plotted. By analyzing the trends of this curves in line with the generated AHRR curves, the SOC may be readily determined.


Author(s):  
Dong Wang ◽  
Chao Zhang

Linear control models to control the Nitrogen Oxides (NOx) and soot emissions from a diesel engine were developed through numerical simulations. A modified KIVA-3V code was used to calculate the NOx and soot formations in a direct injection diesel engine under different operating conditions. The following relationships between the pollutant formations and the heat release rate were observed: 1) NOx formation amount is related to the peak value of the heat release rate and the timing of the premixed combustion; 2) soot formation amount is related to the peak heat release rate and the soot oxidation amount is related to the timing of the premixed combustion. Based on the above observations, linear control models for NOx and soot emissions were constructed. The NOx control model developed through the numerical simulations was implemented into the controller of an EGR valve on a small diesel engine. The experimental results showed that the NOx control model was effective in reducing NOx emissions under high RPM conditions.


Sign in / Sign up

Export Citation Format

Share Document