scholarly journals Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China

2021 ◽  
Vol 13 (16) ◽  
pp. 9443
Author(s):  
Jiekun Song ◽  
Rui Chen ◽  
Xiaoping Ma

Energy consumption is an important source of the emissions of CO2 and air pollutants such as SO2 and NOX. Reducing energy consumption can realize the simultaneous reduction of air pollutants and CO2 emissions to a certain extent. This study examines the collaborative allocation of energy consumption and the emissions of SO2, NOX and CO2 in China. In contrast to previous studies, this paper proposes an improved centralized DEA model that takes into account the correlation between energy consumption and air environmental emissions, the economic development demand and the energy resource endowment of different provinces. The initial allocation scheme is obtained based on the principle of equity. Then, the initial allocation results are brought into the improved centralized DEA model to maximize the expected output. The empirical analysis of projected data for 2025 shows that the looser the restrictions of energy consumption, the greater the optimal economic output. When the energy consumption of each province is allowed to fluctuate within the range of 85% to 115% of the initial quota, the total GDP is the largest and 20.62% higher than the initial GDP. The optimal allocation scheme is more equitable than the initial scheme and realizes absolute interpersonal equity and economic equity. Eighteen provinces bear the pressures of energy saving, emission reduction or GDP growth, with average pressure indexes of 11.46%, 16.85% and 40.62%, respectively. The pressures on the major regions involved in the “Belt and Road”, Beijing-Tianjin-Hebei region and Yangtze River Economic Belt national strategies will thus be reduced significantly; the maximum pressures on energy saving, emission reduction and GDP growth are 10.03%, 12.17% and 29.84%, respectively. China can take a series of measures to promote regional coordinated development and improve the realization of optimal allocation schemes, including establishing unified resource asset trading platforms, improving the methods of regional cooperation, building effective transportation and logistics transport networks to weaken the barriers among regions and implementing differentiated regional policies and regional interest coordination mechanisms.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3600
Author(s):  
Xuejing Zheng ◽  
Boxiao Xu ◽  
Shijun You ◽  
Huan Zhang ◽  
Yaran Wang ◽  
...  

As a critical transportation infrastructure, with a high flow of people and high-energy consumption in China, coach stations have great potential in energy saving and CO2 emission reduction. In this paper, the building information and energy consumption data of 29 coach stations in five climate regions of China were obtained by field investigations. The annual total comprehensive building energy consumption was 31.37–128.08 kWh/(m2·a). The annual total CO2 emissions from building operation in the coach stations was 17.01–134.77 kgCO2/(m2·a). The heating, ventilation and air conditioning (HVAC) system was the largest energy using and CO2 emissions sector: 30.42–72.47% of the energy consumption and 30.42–83.93% of the CO2 emissions were generated by HVAC system. The energy consumption and CO2 emission level of coach stations and that of other kinds of public buildings were compared. Results showed that the energy consumption and CO2 emission levels of coach stations investigated were relatively low, mainly because the passenger thermal comfort was scarified. Based on the investigation data, energy consumption analysis models of coach stations in five regions were established by simulation when the passenger thermal comfort was met. The potentials of energy saving and CO2 emission reduction were studied from forms of the HVAC system, heat recovery and natural illumination.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


2014 ◽  
Vol 962-965 ◽  
pp. 2445-2451
Author(s):  
Ya Fan Li ◽  
Juan Wang ◽  
Xin Tian

This paper firstly analyzed the current situation of integrated passenger transportation hub, putting forward the integrated passenger transportation hub had a strong advantage on developing green low-carbon economy. And then based on the energy consumption analysis of integrated passenger transportation hub, energy saving and emission reduction management measures were proposed.


2020 ◽  
Vol 12 (5) ◽  
pp. 2148 ◽  
Author(s):  
Jingyao Peng ◽  
Yidi Sun ◽  
Junnian Song ◽  
Wei Yang

It is a very urgent issue to reduce energy-related carbon emissions in China. The three northeastern provinces (Heilongjiang (HLJ), Jilin (JL), and Liaoning (LN)) are typical heavy industrial regions in China, playing an important role in the national carbon emission reduction target. In this study, we analyzed the energy consumption, carbon dioxide (CO2) emissions, and CO2 emission intensity of each sector in the three regions, and we compared them with the national level and those of China’s most developed province Guangdong (GD). Then, based on an input–output (I–O) framework, linkage analysis of production and CO2 emission from sector–system and sector–sector dimensions was conducted. The results showed that the three regions accounted for about 1/10 of China’s energy consumption and 1/6 of China’s CO2 emissions in 2012. In addition, the level of energy structure, CO2 emission intensity, and sectoral structure lagged behind China’s average level, much lower than those for GD. According to the sectoral characteristics of each region and unified backward/forward linkages of production and CO2 emissions, we divided sectoral clusters into those whose development was to be encouraged and those whose development was to be restricted. The results of this paper could provide policy–makers with reference to exploring potential pathways toward energy-related carbon emission reduction in heavy industrial regions.


2013 ◽  
Vol 869-870 ◽  
pp. 1056-1062
Author(s):  
Xue Qin Wang ◽  
Cheng Xin Wang ◽  
Yun Wei Du ◽  
Jia Lu Shi

This essay tends to probe into the decoupling relationship between economic growth and carbon emissions through structuring the decoupling analysis model. The results show that: In recent years, the decoupling relationship between economic growth and carbon emissions in Anhui province has improved. Through the research about some intermediate variables, we find that the change trend of energy consumption elastic elasticity of carbon emissions and the one of GDP elastic elasticity of carbon emissions are basically the same. Meanwhile, Anhui province is relatively backward in the energy-saving and emission reduction process, carbon emissions growth and energy consumption growth did not achieve effective decoupling, which reflects that this province still has some defects in the adjustment of energy structure, energy saving and emission reduction technology promotion policy etc.


2013 ◽  
Vol 448-453 ◽  
pp. 2781-2785
Author(s):  
Zhe Li ◽  
Yun Liang ◽  
Jian Wei Ma ◽  
Ping Zhang

Electric power industry is of great potential on energy saving and emission reduction. Remote monitoring and analyzing on the energy consumption of coal-fired units is important methods and basis for energy saving. The system was developed a data acquisition smart device to acquire the energy consumption parameters, designed the cogeneration units "exceed power" algorithm and the energy consumption general model. The system satisfies the industrial requirements of accurate and reliable data transfer and storage and effectively enhances the rapid modeling capabilities, so as to provide technical support for the energy saving and emission reduction works.


2013 ◽  
Vol 448-453 ◽  
pp. 4365-4368 ◽  
Author(s):  
Qi Huang ◽  
Jian Cheng Kang ◽  
Chen Hao Huang

Hospitality industry in China has undergone a breath-taking development in recent years. However, it is burdened both by tremendous energy consumption and the responsibility of environmental protection. The paper is trying to find out the potential in the energy saving and emission reduction. Energy consumption data, in the recent five years, are collected from more than 20 hotels in Shanghai and other eastern China regions. Through the energy conversion factor matrix, these energy consumption factors can be converted into Tce value. Though the analysis of the Tce value, the paper provides a key solution to the problem at hand and possible ways of realizing the goal of establishing basis of carbon emission assessment modeling and cumulative comprehensive energy consumption database suitable for this industry, in the hope of establishing a foundation for future study of carbon footprint of the hospitality industry and its technical proposal for energy saving.


Author(s):  
​Cuma Bozkurt ◽  
İlyas Okumuş

The purposes of this study is to investigate the relationship between per capita CO2 emissions, per capita energy consumption, per capita real GDP, the squares of per capita real GDP, trade openness and Kyoto dummies in selected 20 EU countries over the periods from 1991 to 2013 in order to analyze the connection between environmental pollution and Kyoto Protocol using Environmental Kuznets Curve (EKC) framework. According to EKC hypothesis, there is an inverted-U shape relation between environmental pollution and economic growth. Generally, the relationship between environmental pollution, per capita GDP and energy consumption has been analyzed for testing EKC hypothesis. In this study, it is used dummy variable to analyze the effects of Kyoto protocol on environmental degradation in the context of EKC hypothesis model. The dummy variable indicates Kyoto Protocol agreement year 2005. The results show that there is long run cointegration relationship between CO2, energy consumption, GDP growth, and the squares of GDP growth, trade openness and Kyoto dummy variable. Energy consumption and GDP growth increase the level of CO2 emissions. On the contrary, Kyoto dummy variable de­creases CO2 emissions in EU countries. In addition, the results reveal that the squares of per capita real GDP and trade openness rate are statistically insignificant. As a result of analysis, the inverted-U shape EKC hypothesis is invalid in these EU countries over the periods from 1991 to 2013.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Xiaoli Mu

Heating Ventilation Air Conditioning (HVAC) is an important part of modern architecture, and it is also the most important energy consumption system in the use of modern buildings. With the continuous development and progress of the society, energy saving and emission reduction has become a hot topic in today's society, and people pay enough attention to the application of building HVAC energy-saving technology. Through the application of this technology, the effect of reducing building energy consumption is achieved. The author explores and analyzes the necessity and main advantages of building HVAC energy-saving technology, and puts forward an effective way to apply HVAC energy-saving technology, which is hoped to help reduce building energy consumption.


Sign in / Sign up

Export Citation Format

Share Document