scholarly journals Building Climate-Resilient Cotton Production System for Changing Climate Scenarios Using the DSSAT Model

2021 ◽  
Vol 13 (19) ◽  
pp. 10495
Author(s):  
Zoia Arshad Awan ◽  
Tasneem Khaliq ◽  
Muhammad Masood Akhtar ◽  
Asad Imran ◽  
Muhammad Irfan ◽  
...  

Cotton production is highly vulnerable to climate change, and heat stress is a major constraint in the cotton zone of Punjab, Pakistan. Adaptation is perceived as a critical step to deal with forecasted and unexpected climatic conditions. The objective of this study was to standardize and authenticate a cotton crop model based on climate and crop husbandry data in order to develop an adaptation package for cotton crop production in the wake of climate change. For the study, the data were collected from the cotton-growing areas of Punjab, viz. Bahawalpur and Khanewal. After the calibration and validation against field data, the Cropping System Model CSM–CROPGRO–Cotton in the shell of the decision support system for agro-technology transfer (DSSAT) was run with a future climate generated under two representative concentrations pathways (RCPs), viz. RCPs 4.5 and 8.5 with five global circulation models (GCMs). The whole study showed that a model is an artistic tool for examining the temporal variation in cotton and determining the potential impact of planting dates on crop growth, phenology, and yield. The results showed that the future climate would have drastic effects on cotton production in the project area. Reduction in seed cotton yield (SCY) was 25.7% and 32.2% under RCPs 4.5 and 8.5, respectively. The comparison of five GCMs showed that a hot/wet climate would be more damaging than other scenarios. The simulations with different production options showed that a 10% and 5% increase in nitrogen and plant population, respectively, compared to the present would be the best strategy in the future. The model further suggested that planting conducted 15 days earlier, combined with the use of water and nitrogen (fertigation), would help to improve yield with 10% less water under the future climate. Overall, the proposed adaptation package would help to recover 33% and 37% of damages in SCY due to the climate change scenarios of RCP 4.5 and 8.5, respectively. Furthermore, the proposed package would also help the farmers increase crop yield by 7.5% over baseline (current) yield.

Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


Author(s):  
Zdeněk Žalud ◽  
M. Trnka ◽  
M. Dubrovský ◽  
E. Kocmánková

The increase in the infestation pressure of various pathogens will be one the most important factors limiting the crop production under the future climate conditions. Weather driven NegFry model has been used for estimating future Phytophthora infestans occurrence at four experimental potato stations of the State Institute for Agriculture Supervision and Testing. Both the infestation dates of Phytophthora infestans occurrence and the shape of the critical number curve were analyzed using observed weather data as well as datasets constructed according to four climate change scenarios that were based on two global circulation models. The results show the shift of the infestation pressure to the beginning of the year and describe increasing trend of critical number reaching to detecting of the first Phyto­phtho­ra infestans occurrence for 2025 and 2050. Scenarios created according to HadCM and SRES – A2 seem to be more suitable for disease development.


2021 ◽  
Author(s):  
Elizabeth Fuller ◽  
Claire Scannell ◽  
Victoria Ramsey ◽  
Rebecca Parfitt ◽  
Nicola Golding

<p>In 2018, the UN estimated that around 55% of the world’s population currently live within urban areas, with this value projected to rise to 60% by 2030 (United Nations, 2018). High levels of urbanisation, coupled with an increasing trend in extreme weather under future climate change scenarios, combine to create significant challenges to increasing urban resilience for the future (Masson et al., 2020).</p><p>Urban climate services provide tools to support decision making at a range of scales across the city, from day-to-day operations to informing urban design over longer timescales (Grimmond et al., 2015). Whilst urban climate services may be developed at a range of scales (Grimmond et al., 2020), this presentation looks at a prototype climate service which provides long-term climate change projections at the city-specific scale. The ‘City Pack’ was developed through a process of co-production, in which project development aims to move away from a one-way push of scientific information, to a two-way collaborative process of knowledge construction and sharing (Vincent et al., 2019).</p><p>This ‘City Pack’ service was co-developed by the Met Office and Bristol City Council following an assessment of the Council’s climate information needs. The City Pack comprises of three non-technical factsheets which explain how the climate of Bristol has changed and will continue to change into the 21<sup>st</sup> Century based on the UKCP climate projections. The City Pack’s primary aims are to raise awareness of how a cities climate may change in the future and to inform the development of city resilience whilst also providing a tool to be used by city stakeholders to raise awareness of climate change across the council. The audience for the City Pack therefore includes city officials, city planners and the general public. The Bristol City Pack has since provided an evidence base for the Bristol City Council Climate Change Risk Assessment and informed Bristol’s Climate Strategy. In addition, the City Pack has been used to engage with the council’s wider stakeholders and also as a communication and training tool. As such, whilst the co-production of a climate service may be time and resource intensive, the process may also be rewarded with the production of a highly tailored and user-relevant tool.</p><p>Following the success of the prototype ‘City Pack’ service for Bristol City Council, the Met Office are continuing to produce City Packs for additional cities across the UK, and also in China. The project is seeking to ascertain if services which are co-produced with and bespoke to one set of stakeholders, may provide an equally valuable service for other cities and if so, how can we make these services scalable.</p>


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 996
Author(s):  
Lele Lin ◽  
Jian He ◽  
Lei Xie ◽  
Guofa Cui

White pines (Pinus subsect. Strobus) play important roles in forest ecosystems in the Northern Hemisphere. Species of this group are narrowly distributed or endangered in China. In this study, we used a species distribution model (SDM) to project and predict the distribution patterns of the 12 species of Chinese white pine under a variety of paleoclimatic and future climate change scenarios based on 39 high-resolution environmental variables and 1459 distribution records. We also computed the centroid shift, range expansion/contraction, and suitability change of the current distribution area to assess the potential risk to each species in the future. The modeling results revealed that the suitable habitat of each species is consistent with but slightly larger than its actual distribution range and that temperature, precipitation, and UV radiation are important determining factors for the distribution of different white pine species. The results indicate that the Last Glacial Maximum (LGM) greatly affected the current distribution of the Chinese white pine species. Additionally, it was predicted that under the future climate change scenarios, there will be a reduction in the area of habitats suitable for P. armandii, P. morrisonicola, and P. mastersiana. Furthermore, some of the current distribution sites of P. armandii, P. kwangtungensis, P. mastersiana, P. morrisonicola, P. sibirica, and P. wallichiana were predicted to become more unsuitable under these scenarios. These results indicate that some Chinese white pine species, such as P. armandii, P. morrisonicola, and P. mastersiana, may have a very high risk of population shrinkage in the future. Overall, this study provided relevant data for the long-term conservation (both in situ and ex situ) and sustainable management of Chinese white pine species.


2021 ◽  
Vol 13 (2) ◽  
pp. 462
Author(s):  
Muhammad Hadi Saputra ◽  
Han Soo Lee

This study aims to assess the impact of climate change on the distribution of Styrax sumatrana in North Sumatra by applying the maximum entropy (MaxEnt) model with biophysical factors (elevation, slope, aspect, and soil), climatic factors (19 bioclimate data sets for 2050 and 2070), and anthropogenic factors (land use land cover (LULC) changes in 2050 and 2070). The future climate data retrieved and used are the output of four climate models from Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, the CCSM4, CNRM-CM5, MIROC5, and MRI-CGCM3 models, under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. The MaxEnt modelling results showed the importance of the mean temperature of the coldest quarter and the LULC variables. Styrax sumatrana rely on environmental conditions with air temperatures ranging from 13 to 19 °C. The potentially suitable land types for Styrax sumatrana are shrubs, gardens, and forests. The future predictions show that the suitable habitat for Styrax sumatrana is predicted to decrease to 3.87% in 2050 and to 3.54% in 2070 under the RCP4.5 scenario. Under the RCP8.5 scenario, the suitable area is predicted to decrease to 3.04% in 2050 and to 1.36% in 2070, respectively. The degradation of the suitable area is mainly due to increasing temperature and deforestation in future predictions. The modelling results illustrate that the suitable habitats of Styrax sumatrana are likely to be reduced under future climate change scenarios or lost in 2070 under the RCP8.5 scenario. The potential future extinction of this species should alert authorities to formulate conservation strategies. Results also demonstrated key variables that should be used for formulating ex situ conservation strategies.


2020 ◽  
Author(s):  
Hongfei Xie ◽  
JUNFANG ZHAO ◽  
Jianyong Ma ◽  
Weixiong Yan

Abstract Background At present, global warming is an indisputable fact, and more and more attention has been paid to the impacts of climate warming on global ecological environments. Forests play increasing significant roles in regulating global carbon balance and mitigating climate change. Therefore, to understand the response mechanisms of the carbon budget of global forest ecosystems to future climate change, an improved version of the FORest ecosystem Carbon budget model for CHiNa (FORCCHN) and future Representative Concentration Pathway (RCP) scenario RCP4.5 and RCP8.5 were applied in this study.Results The global forest ecosystems will play a major role in the carbon sink under the future two climate change scenarios. In particular, the average carbon budget (namely the Net Ecosystem Productivity, NEP) of global forest ecosystems under RCP4.5 scenario was estimated to be 0.017 kg(C)·m− 2·yr− 1 from 2006 to 2100. The future carbon sink areas of global forest ecosystems will increase significantly. Under RCP4.5 and RCP8.5 climate scenarios, the carbon sink areas of global forest ecosystems during 2026–2100 would be significantly higher than those in 2006–2025, with increases of 83.16–87.26% and 23.53–29.70%, respectively. The impacts of future climate change on NEP of global forest ecosystems will significantly vary between different regions. The NEP of forests will be enhanced in the northern hemisphere and significantly weakened in the southern hemisphere under the future two climate change scenarios. The carbon sink regions of global forests will be mainly distributed in the middle and high latitudes of the northern hemisphere. In particular, the forests'NEP in northeastern and central Asia, northern Europe and western North America will increase by 40%~80%. However, the NEP of forests will decrease by 20%~40% in the most regions of the southern hemisphere. In northern South America and central Africa, the forests' NEP will be reduced by more than 40%.Conclusions The global forest ecosystems will play a major role in the carbon sink under the future two climate change scenarios. However, the NEP of forests will be enhanced in the northern hemisphere and significantly weakened in the southern hemisphere. In the future, in some areas of southern hemisphere, where the forests' NEP was predicted to be reduced, some measures for improving forest carbon sink, such as strengthening forest tending, enforcing prohibiting deforestation laws and scientific forest management, and so on, should be implemented to ensure immediate mitigation and adaptation to climate change.


Author(s):  
Pedram Mahdavi ◽  
Hossein Ghorbanizadeh Kharazi ◽  
Hossein Eslami ◽  
Narges Zohrabi ◽  
Majid Razaz

Abstract Global warming affected by human activities causes changes in the regime of rivers. Rivers are one of the most vital sources that supply fresh water. Therefore, management, planning, and proper use of rivers will be crucial for future climate change conditions. This study investigated the monitoring of hydrological drought in a future period to examine the impact of climate change on the discharging flow of the Zard River basin in Iran. Zard River is an important supplier of fresh and agricultural water in a vast area of Khuzestan province in Iran. A continuous rainfall-runoff model based on Soil Moisture Accounting (SMA) algorithm was applied to simulate the discharge flow under 10 scenarios (obtained from LARS-WG.6 software) of future climate change. Then, the Stream-flow Drought Index (SDI) and the Standard Precipitation Index (SPI) were calculated for each climate change scenario for the future period (2041–2060). The results of the meteorological drought assessment showed that near normal and moderate droughts had higher proportions among other drought conditions. Moreover, the hydrological drought assessment showed the occurrence of two new droughts (severe and extreme) conditions for the future period (2041–2060) that has never happened in the past (1997–2016).


Author(s):  
T. Raj Adhikari ◽  
L. Prasad Devkota ◽  
A. Bhakta Shrestha

Abstract. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data were used for the future climate scenarios prediction for the period 2000–2050s, under the Special Report on Emissions Scenarios (SRES) A2 and A1B scenarios. In addition, rating equation was developed from measured discharge and gauge (stage) height data. The generated precipitation and temperature data from downscale and rating equation was used to run the HBV-Light 3.0 conceptual rainfall–runoff model for the calibration and validation of the model, gauge height was taken in the reference period (1988–2009). In the HBV-Light 3.0, a GAP optimization approach was used to calibrate the observed streamflow. From the precipitation scenarios with SRES A2 and A1B emissions at Kyanging, an increase of precipitation during summer and spring and a decrease during winter and autumn seasons was shown. The model projected annual precipitation for the 2050s of both the A2 and A1B scenarios are 716.4 mm and 703.6 mm, respectively. Such precipitation projections indicate the future increase of precipitation in all seasons except the summer. By the end of the 2050s simulation projects an increase maximum (minimum) discharge of 37.8 m3/s (13.9 m3/s) for A1B scenario and 36.2 m3/s (14.3 m3/s) for A2 scenario. A maximum projected discharge will increase for all seasons except for spring, whereas the minimum will decrease in summer.


Sign in / Sign up

Export Citation Format

Share Document