scholarly journals Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain

2021 ◽  
Vol 13 (20) ◽  
pp. 11448
Author(s):  
Miguel Ángel Sanjuán ◽  
Ángel Morales ◽  
Aniceto Zaragoza

The widespread use of solar-reflective concrete pavements can mitigate climatic change and urban heat islands (UHI) by cooling the pavement surfaces that are made of concrete instead of asphalt. The methodology that was followed is based on the comparison between the asphalt and concrete albedo effects in a specific application and area. In this study, we found that a reduction of temperature in the terrestrial surface, equivalent to the removal of 25–75 kgCO2/m2, could be achieved. Considering all the motorways and freeways of Spain, which is the third country in the world in km, a yearly equivalent carbon dioxide emissions reduction of 13–27 million tons could be reached. This value is quite high considering that the cement sector worldwide released about 2.9 Gigatons of carbon dioxide in 2016. Therefore, there is a positive balance in the use of concrete pavements. Furthermore, concrete is a material completely recyclable at the end of its service life and concrete pavement construction requires local resources, avoiding GHG emissions due to transport. An increase in the Spanish freeway network albedo by replacing asphalt pavements with concrete ones will improve the local climate change mitigation.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Antonín Lupíšek ◽  
Tomáš Trubačík ◽  
Petr Holub

One of the major anthropogenic sources of greenhouse gases is the operation of building stock. Improving its energy efficiency has the potential to significantly contribute to achieving climate change mitigation targets. The purpose of this study was to roughly estimate such potential for the operation of the national building stock of Czechia to steer the national debate on the development of related national plans. The estimation is based on a simplified energy model of the Czech building stock that consists of sub-models of residential and nonresidential building stocks, for which their future energy consumptions, shares of energy carriers and sources, and emission factors were modeled in four scenarios. Uncertainties from the approximation of the emission factors were investigated in a sensitivity analysis. The results showed that the operation of the Czech building stock in 2016 totaled 36.9 Mt CO2, which represented 34.6% of the total national carbon dioxide emissions. The four building stock scenarios could produce reductions in the carbon dioxide emissions of between 28% and 93% by 2050, when also considering on-side production from photovoltaics. The implementation of the most ambitious scenario would represent a drop in national CO2 yearly emissions by 43.2% by 2050 (compared to 2016).


Author(s):  
Komukama Grace

It is undisputable that tourism has grown since the last decades and is the main source of foreign exchange for most developing countries. This growth is partially attributable to technological advancements in the aviation industry which has eased transportation from one region to another. However tourism contribution to carbon dioxide emissions through air transport is alarming with the sector contributing 40% of the overall carbon print and therefore if immediate remedies are not undertaken the earth system may go in a state where it may never recover. The aim of the paper therefore is to point out how behavioral change is the immediate solution for reduction in climate change emissions especially those originating from the aviation industry, since reliance on the technological advancement is mythical. Content analysis was used to conduct the study by using the crucial keywords in three online databases and 17,966 results were analyzed. Findings indicate that behavioral change is the immediate remedy for climate change mitigation. This is coupled with the fact that most air customers are living in denial and yet governments and the aviation industry lack commitment to controlling climate change. Therefore, if any tangible reduction is to be achieved in climate change emanating from aviation industry, there is need for realistic measures from both the governments and the aviation sector in order to encourage individual behavioral changes.


2019 ◽  
Author(s):  
◽  
Lisa Groshong

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Missouri's outdoor recreation resources provide numerous mental, physical, and social values to millions of people each year and serve as a major contributor to the statewide economy. However, climate change threatens these benefits. This project sought to explore climate change perceptions and place attachment of outdoor enthusiasts in Missouri as a step toward managing natural and cultural resources for ongoing climate resilience. This study used interviews and a statewide visitor survey to measure climate change impacts on visitors to Missouri's state parks and historic sites. The dissertation is formatted in three manuscripts. The first manuscript assessed how engaged state park users perceive climate change impacts and what they view as the agency role in climate change mitigation, education, and communication. The second manuscript identified health concerns related to climate change and examined how these concerns affect park use. The final manuscript examined the role of place attachment in determining visitors' willingness to engage in climate friendly behavior and support for management action to minimize climate-change impacts. Overall findings suggested climate-change related management challenges and provided evidence for visitor support for education and action. Opportunities were identified for state park managers to take action toward locally-oriented climate change mitigation, education and communication. Place attachment dimensions were affirmed as tools for engaging visitors in climate-related actions, both in and beyond park settings.


2019 ◽  
Vol 11 (14) ◽  
pp. 3801 ◽  
Author(s):  
Chae Yeon Park ◽  
Dong Kun Lee ◽  
Jung Hee Hyun

The impacts of extreme heat in Seoul, Korea, are expected to increase in frequency and magnitude in response to global warming, necessitating certain adaptation strategies. However, there is a lack of knowledge of adaptation strategies that would be able to reduce the impacts of extreme heat to cope with an uncertain future, especially on the local scale. In this study, we aimed to determine the effect of adaptation strategies to reduce the mortality risk under two climate change mitigation scenarios, using Representative Concentration Pathways (RCP) 2.6 and 8.5. We selected four street-level adaptation strategies: Green walls, sidewalk greenways, reduced-albedo sidewalks and street trees. As an extreme heat assessment criterion, we used a pedestrian mean radiant temperature threshold, which was strongly related to heat mortality. The results, projected to the 2050s, showed that green walls, greenways and reduced-albedo sidewalks could adequately reduce the extreme heat impacts under RCP2.6; however, only street trees could reduce the extreme heat impacts under RCP8.5 in the 2050s. This implies that required adaptation strategies can vary depending on the targeted scenario. This study was conducted using one street in Seoul, but the methodology can be expanded to include other adaptation strategies, and applied to various locations to help stakeholders decide on effective adaptation options and make local climate change adaptation plans.


Sign in / Sign up

Export Citation Format

Share Document