scholarly journals Chemically Recuperated Gas Turbines for Offshore Platform: Energy and Environmental Performance

2021 ◽  
Vol 13 (22) ◽  
pp. 12566
Author(s):  
Oleg Bazaluk ◽  
Valerii Havrysh ◽  
Oleksandr Cherednichenko ◽  
Vitalii Nitsenko

Currently, offshore areas have become the hotspot of global gas and oil production. They have significant reserves and production potential. Offshore platforms are energy-intensive facilities. Most of them are equipped with gas turbine engines. Many technologies are used to improve their thermal efficiency. Thermochemical recuperation is investigated in this paper. Much previous research has been restricted to analyzing of the thermodynamic potential of the chemically recuperated gas turbine cycle. However, little work has discussed the operation issues of this cycle. The analysis of actual fuel gases for the steam reforming process taking into account the actual load of gas turbines, the impact of steam reforming on the Wobbe index, and the impact of a steam-fuel reforming process on the carbon dioxide emissions is the novelty of this study. The obtained simulation results showed that gas turbine engine efficiency improved by 8.1 to 9.35% at 100% load, and carbon dioxide emissions decreased by 10% compared to a conventional cycle. A decrease in load leads to a deterioration in the energy and environmental efficiency of chemically recuperated gas turbines.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2156 ◽  
Author(s):  
Oleksandr Cherednichenko ◽  
Valerii Havrysh ◽  
Vyacheslav Shebanin ◽  
Antonina Kalinichenko ◽  
Grzegorz Mentel ◽  
...  

Growing economies need green and renewable energy. Their financial development can reduce energy consumption (through energy-efficient technologies) and replace fossil fuels with renewable ones. Gas turbine engines are widely used in transport and industry. To improve their economic attractiveness and to reduce harmful emissions, including greenhouse gases, alternative fuels and waste heat recovery technologies can be used. A promising direction is the use of alcohol and thermo-chemical recuperation. The purpose of this study is to estimate the economic efficiency and carbon dioxide emissions of an alcohol-fueled regenerative gas turbine engine with thermo-chemical recuperation. The carbon dioxide emissions have been determined using engine efficiency, fuel properties, as well as life cycle analysis. The engine efficiency was maximized by varying the water/alcohol ratio. To evaluate steam fuel reforming for a certain engine, a conversion performance factor has been suggested. At the optimal water/methanol ratio of 3.075 this technology can increase efficiency by 4% and reduce tank-to-wake emission by 80%. In the last 6 months of 2019, methanol prices were promising for power and cogeneration plants in remote locations. The policy recommendation is that local authorities should pay attention to alcohol fuel and advanced turbines to curb the adverse effects of burning petroleum fuel on economic growth and the environment.


Author(s):  
Raik C. Orbay ◽  
Magnus Genrup ◽  
Pontus Eriksson ◽  
Jens Klingmann

When low calorific value gases are fired, the performance and stability of gas turbines may deteriorate due to a large amount of inertballast and changes in working fluid properties. Since it is rather rare to have custom-built gas turbines for low lower heating value (LHV) operation, the engine will be forced to operate outside its design envelope. This, in turn, poses limitations to usable fuel choices. Typical restraints are decrease in Wobbe index and surge and flutter margins for turbomachinery. In this study, an advanced performance deck has been used to quantify the impact of firing low-LHV gases in a generic-type recuperated as well as unrecuperated gas turbine. A single-shaft gas turbine characterized by a compressor and an expander map is considered. Emphasis has been put on predicting the off-design behavior. The combustor is discussed and related to previous experiments that include investigation of flammability limits, Wobbe index, flame position, etc. The computations show that at constant turbine inlet temperature, the shaft power and the pressure ratio will increase; however, the surge margin will decrease. Possible design changes in the component level are also discussed. Aerodynamic issues (and necessary modifications) that can pose severe limitations on the gas turbine compressor and turbine sections are discussed. Typical methods for axial turbine capacity adjustment are presented and discussed.


Author(s):  
E. A. Ogiriki ◽  
Y. G. Li ◽  
Th. Nikolaidis

Thermal barrier coatings (TBCs) have been widely used in the power generation industry to protect turbine blades from damage in hostile operating environment. This allows either a high turbine entry temperature (TET) to be employed or a low percentage of cooling air to be used, both of which will improve the performance and efficiency of gas turbine engines. However, with continuous increases in TET aimed at improving the performance and efficiency of gas turbines, TBCs have become more susceptible to oxidation. Such oxidation has been largely responsible for the premature failure of most TBCs. Nevertheless, existing creep life prediction models that give adequate considerations to the effects of TBC oxidation on creep life are rare. The implication is that the creep life of gas turbines may be estimated more accurately if TBC oxidation is considered. In this paper, a performance-based integrated creep life model has been introduced with the capability of assessing the impact of TBC oxidation on the creep life and performance of gas turbines. The model comprises of a thermal, stress, oxidation, performance, and life estimation models. High pressure turbine (HPT) blades are selected as the life limiting component of gas turbines. Therefore, the integrated model was employed to investigate the effect of several operating conditions on the HPT blades of a model gas turbine engine using a creep factor (CF) approach. The results show that different operating conditions can significantly affect the oxidation rates of TBCs which in turn affect the creep life of HPT blades. For instance, TBC oxidation can speed up the overall life usage of a gas turbine engine from 4.22% to 6.35% within a one-year operation. It is the objective of this research that the developed method may assist gas turbine users in selecting the best mission profile that will minimize maintenance and operating costs while giving the best engine availability.


Author(s):  
Raik C. Orbay ◽  
Magnus Genrup ◽  
Pontus Eriksson ◽  
Jens Klingmann

When low calorific value gases are fired, the performance and stability of gas turbines may deteriorate due to a large amount of inert ballast and changes in working fluid properties. Since it is rather rare to have custom-built gas turbines for low Lower Heating Value (LHV) operation, the engine will be forced to operate outside its design envelope. This, in turn, poses limitations to usable fuel choices. Typical restraints are decrease in Wobbe-index and surge- and flutter-margins for turbomachinery. In this study, an advanced performance deck has been used to quantify the impact of firing low-LHV gases in a generic type gas turbine. A single-shaft gas turbine characterized by a compressor and an expander map is considered. Emphasis has been put on predicting the off-design behavior. The combustor is discussed and related to previous experiments which include investigation of flammability limits, Wobbe-index, flame position, etc. The computations show that at constant turbine inlet temperature (TIT), the shaft power and the pressure ratio will increase, however the surge margin will decrease. Possible design changes in the component level are also discussed. Aerodynamic issues (and necessary modifications) that can pose severe limitations on the gas turbine compressor- and turbine sections are discussed. Typical methods for axial turbine capacity adjustment are presented and discussed.


Author(s):  
E. A. Ogiriki ◽  
Y. G. Li ◽  
Th. Nikolaidis

Thermal Barrier Coatings (TBC) have been widely used in the power generation industry to protect turbine blades from damage in hostile operating environment. This allows either a high Turbine Entry temperature (TET) to be employed or a low percentage of cooling air to be used, both of which will improve the performance and efficiency of gas turbine engines. However, with continuous increases in turbine entry temperature aimed at improving the performance and efficiency of gas turbines, TBCs have become more susceptible to oxidation. Such oxidation has been largely responsible for the premature failure of most TBCs. Nevertheless, existing creep life prediction models that give adequate considerations to the effects of TBC oxidation on creep life are rare. The implication is that the creep life of gas turbines may be estimated more accurately if TBC oxidation is considered. In this paper, a performance-based integrated creep life model has been introduced with the capability of assessing the impact of TBC oxidation on the creep life and performance of gas turbines. The model comprises of a thermal, stress, oxidation, performance, and life estimation models. High Pressure Turbine (HPT) blades are selected as the life limiting component of the gas turbine. Therefore the integrated model was employed to investigate the effect of several operating conditions on the HPT blades of a model gas turbine engine using a Creep Factor approach. The results show that different operating conditions can significantly affect the oxidation rates of TBCs which in turn affect the creep life of HPT blades. For instance, TBC oxidation can speed up the overall life usage of a gas turbine engine from 4.22% to 6.35% within one year operation. It is the objective of this research that the developed method may assist gas turbine users in selecting the best mission profile that will minimize maintenance and operating costs while giving the best engine availability.


2019 ◽  
Vol 124 ◽  
pp. 05063 ◽  
Author(s):  
G.E. Marin ◽  
B.M. Osipov ◽  
D.I. Mendeleev

The purpose of this paper is to study and analyze the gas turbine engine and the thermodynamic cycle of a gas turbine. The article describes the processes of influence of the working fluid composition on the parameters of the main energy gas turbines, depending on the composition of the fuel gas. The calculations of the thermal scheme of a gas turbine, which were made using mathematical modeling, are given. As a result of research on the operation of the GE PG1111 6FA gas turbine installation with various gas compositions, it was established that when the gas turbine is operating on different fuel gases, the engine efficiency changes. The gas turbine efficiency indicators were determined for various operating parameters and fuel composition. The impact of fuel components on the equipment operation is revealed.


Author(s):  
W. Mohamed ◽  
S. Eshati ◽  
P. Pilidis ◽  
S. Ogaji ◽  
P. Laskaridis ◽  
...  

Peak load operation requires gas turbines to operate at high firing temperature with consequence reduction in the useful lives of components. This paper studies the quantitative relationship between gas turbine power setting and the hot gas-path components’ life consumption. A 165MW gas turbine engine is modelled and investigated in this study. A comparative lifing model, which performs stress and thermal analyses, estimates the minimum creep life of components using the parametric Larson Miller method. This lifing model was integrated with in-house performance simulation software to simulate the engine performances at design point and off-design conditions. The results showed that the combined effect of the operating environment and the power demand could have significant impact on blade creep life. Predicting this impact will aid gas turbine users in the decision making processes associated with gas turbine operation.


2020 ◽  
Vol 142 (06) ◽  
pp. 52-53
Author(s):  
Lee S. Langston

Abstract The gas turbine industry is facing the prospects of meeting proposed national and international targets for reducing carbon dioxide emissions and for the promotion of sustainable energy. The evolving role of gas turbines to decarbonize the world’s energy conversion systems has been the theme of articles in the Global Gas Turbine News (GGTN) in the last three issues, of September 2019, December 2019 and March 2020. The articles are reviewed here


Author(s):  
C. Rodgers

Aerothermodynamic analysis studies for open Brayton cycles are often conducted treating the component efficiencies as independent variables. However, as maximum output power is decreased and maximum cycle temperature increased, turbomachinery component sizes diminish resulting in lower component efficiencies. A meaningful small gas turbine cycle analysis should, therefore, treat the component efficiencies as dependent variables. A discussion of such a treatment, as employed during the cycle analysis phase of a small gas turbine, is presented. The particular aerodynamic configuration examined is one comprising a single-stage radial compressor and a single-stage radial turbine. Additionally, cycle performance charts for the selected configuration are presented indicating optimum cycle parameter combinations, attainable performance levels, and typical small gas turbine engine weights.


Author(s):  
Peter L. Meitner ◽  
Anthony L. Laganelli ◽  
Paul F. Senick ◽  
William E. Lear

A semi-closed cycle, turboshaft gas turbine engine was assembled and tested under a cooperative program funded by the NASA Glenn Research Center with support from the U.S. Army. The engine, called HPRTE (High Pressure, Recuperated Turbine Engine), features two distinct cycles operating in parallel; an “inner,” high pressure, recuperated cycle, in which exhaust gas is recirculated, and an “open” through-flow cycle. Recuperation is performed in the “inner,” high pressure loop, which greatly reduces the size of the heat exchanger. An intercooler is used to cool both the recirculated exhaust gas and the fresh inlet air. Because a large portion of the exhaust gas is recirculated, significantly less inlet air is required to produce a desired horsepower level. This reduces the engine inlet and exhaust flows to less than half that required for conventional, open cycle, recuperated gas turbines of equal power. In addition, the reburning of the exhaust gas reduces exhaust pollutants. A two-shaft engine was assembled from existing components to demonstrate concept feasibility. The engine did not represent an optimized system, since most components were oversized, and the overall pressure ratio was much lower than optimum. New cycle analysis codes were developed that are capable of accounting for recirculating exhaust flow. Code predictions agreed with test results. Analyses for a fully developed engine predict almost constant specific fuel consumption over a broad power range. Test results showed significant emissions reductions. This document is the first in a series of papers that arc planned to be presented on semi-closed cycle characteristics, issues, and applications, addressing the impact of recirculating exhaust flow on combustion and engine components.


Sign in / Sign up

Export Citation Format

Share Document