scholarly journals Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT Model

2021 ◽  
Vol 13 (23) ◽  
pp. 13158
Author(s):  
Koppuravuri Ramabrahmam ◽  
Venkata Reddy Keesara ◽  
Raghavan Srinivasan ◽  
Deva Pratap ◽  
Venkataramana Sridhar

In the semi-arid regions of South Asia, tank systems are the major source of irrigation. In India, the Telangana state government has initiated the Mission Kakatiya program to rejuvenate irrigation tank systems. Understanding the hydrological processes that supply water to these systems is critical to the success of these types of programs in India. The current study attempted to comprehend the hydrological processes and flow routing in the Salivagu watershed tank cascade system in Telangana. There are a lot of ungauged tank cascade systems in this region. Soil Water Assessment Tool (SWAT), a physically-based model, was used to simulate flow patterns in the Salivagu watershed with and without tank systems. The geospatially extracted area and volume were used for this study provided by WBIS-Bhuvan-NRSC. Additionally, the Katakshapur Tank Cascade System (KTCS) was chosen to analyze the water availability in each tank using the water balance approach. The Salivagu watershed flow simulation without tanks overestimated streamflow. The volume difference in flow between with and without tank was 606 Mm3, 615.9 Mm3, and 1011 Mm3 in 2017, 2018, and 2019, respectively. The SWAT simulated volumes of the Ramchandrapur and Dharmaraopalle tanks in KTCS were merely satisfied because the tank size was less than 0.7 km2 and the storage capacity was up to 1 Mm3. Due to tank sizes more than 0.8 km2 and capacities greater than 2 Mm3, the Mallampalli and Katakshapur tank simulation findings were in good agreement with WBIS-Bhuvan-NRSC. This research advances our understanding of the hydrological processes in ungauged cascading tank systems in tropical semi-arid regions.

Author(s):  
Rahmatullah Sediqi ◽  
Mustafa Tombul

The Soil and Water Assessment Tool (SWAT), a semi-distributed physically-based hydrological model, is broadly used for simulating streamflow and analyzing hydrological processes in the basin. The SWAT model was applied to analyze the hydrological processes in Göksu Himmetli, Zamanti-Ergenuşağı, Göksun Poskoflu ve Hurman-Gözler Üstü sub-basins in the upper region of Seyhan and Ceyhan watersheds located in the south of Turkey. Model sensitivity analysis, calibration, and validation were performed using SWAT-CUP automatic calibration program and SUFI-2 algorithm. According to the model sensitivity analysis results, the most sensitive parameters in these basins have been seen as CN2, ALPHA_BNK, CH_K2, and GW_DELAY. In this study, 11 years (1994-2004) meteorological and eight years (1997-2004) observed flow data were used, three years for the model warm-up period, five years (1997-2001) for calibration, and three years (2002-2004) for validation. The model statistical performance was evaluated using the Nash Sutcliffe Efficiency (NSE) as the objective function. As the result of the model calibration and validation, the NSE value in the considered four sub-basins varied between 0,70 - 0,90. The results obtained in the study showed a relatively high correlation between the observed and simulated discharge data.


2013 ◽  
Vol 726-731 ◽  
pp. 3792-3798
Author(s):  
Wen Ju Zhao ◽  
Wei Sun ◽  
Zong Li Li ◽  
Yan Wei Fan ◽  
Jian Shu Song ◽  
...  

SWAT (Soil and Water Assessment Tool) model is one of distributed hydrological model, based on spatial data offered by GIS and RS. This article mainly introduces the SWAT model principle, structure, and it is the application of stream flow simulation in China and other countries, then points out the deficiency existing in the process of model research. In order to service in water resources management work better, experts and scholars further research the rate constant and uncertainty of the simplification of the model parameters, and the combination of RS and GIS to use, and hydrological scale problems.


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Ryan T. Bailey ◽  
Katrin Bieger ◽  
Jeffrey G. Arnold ◽  
David D. Bosch

Watershed models are used worldwide to assist with water and nutrient management under conditions of changing climate, land use, and population. Of these models, the Soil and Water Assessment Tool (SWAT) and SWAT+ are the most widely used, although their performance in groundwater-driven watersheds can sometimes be poor due to a simplistic representation of groundwater processes. The purpose of this paper is to introduce a new physically-based spatially-distributed groundwater flow module called gwflow for the SWAT+ watershed model. The module is embedded in the SWAT+ modeling code and is intended to replace the current SWAT+ aquifer module. The model accounts for recharge from SWAT+ Hydrologic Response Units (HRUs), lateral flow within the aquifer, Evapotranspiration (ET) from shallow groundwater, groundwater pumping, groundwater–surface water interactions through the streambed, and saturation excess flow. Groundwater head and groundwater storage are solved throughout the watershed domain using a water balance equation for each grid cell. The modified SWAT+ modeling code is applied to the Little River Experimental Watershed (LREW) (327 km2) in southern Georgia, USA for demonstration purposes. Using the gwflow module for the LREW increased run-time by 20% compared to the original SWAT+ modeling code. Results from an uncalibrated model are compared against streamflow discharge and groundwater head time series. Although further calibration is required if the LREW model is to be used for scenario analysis, results highlight the capabilities of the new SWAT+ code to simulate both land surface and subsurface hydrological processes and represent the watershed-wide water balance. Using the modified SWAT+ model can provide physically realistic groundwater flow gradients, fluxes, and interactions with streams for modeling studies that assess water supply and conservation practices. This paper also serves as a tutorial on modeling groundwater flow for general watershed modelers.


Author(s):  
Cihangir Koycegiz ◽  
Meral Buyukyildiz ◽  
Serife Yurdagul Kumcu

Abstract There are many empirical, semi-empirical and mathematical methods that have been developed to estimate sediment yield by researchers. In the last decades, the advancement in computer technologies has increased the use of mathematical models as they can solve the system more rapidly and accurately. The Soil and Water Assessment Tool (SWAT) is one of the physically based hydrological models that is preferred to compute sediment yield. In this study, spatial and temporal analysis of sediment yield in the Çarşamba Stream located at the Konya Closed Basin has been investigated using the SWAT model. Streamflow and sediment data collected during the 2003–2015 time period have been used in the analysis. Consequently, the SWAT presented satisfactory results compared with R2 = 0.68, Nash–Sutcliffe Efficiency (NSE) = 0.68 in calibration and R2 = 0.76, NSE = 0.66 in validation. According to the model results, spatial asymmetry in terms of sediment yield was determined in the sub-basins of the study area.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 962 ◽  
Author(s):  
Lili Wang ◽  
Zhonggen Wang ◽  
Changming Liu ◽  
Peng Bai ◽  
Xiaocong Liu

It is important to simulate streamflow with hydrological models suitable for the particular study areas, as the hydrological characteristics of water cycling processes are distinctively different due to spatial heterogeneity at the watershed scale. However, most existing hydrological models cannot be customized to simulate water cycling processes of different areas due to their fixed structures and modes. This study developed a HydroInformatic Modeling System (HIMS) model with a flexible structure which had multiple equations available to describe each of the key hydrological processes. The performance of the HIMS model was evaluated with the recommended structure for semi-arid areas by comparisons with two datasets of observed streamflow: the first one of 53 Australian watersheds, the second one of the Lhasa River basin in China. Based on the first dataset, the most appropriate watersheds were identified for the HIMS model utilization with areas of 400–600 km2 and annual precipitation of 800–1200 mm. Based on the second dataset, the model performance was statistically satisfied with Nash-Sutcliffe Efficient (NSE) greater than 0.87 and Water Error (WE) within ±20% on the streamflow simulation at hourly, daily, and monthly time steps. In addition, the water balance was mostly closed with respect to precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change at the annual time steps in both the periods of calibration and validation. Therefore, the HIMS model was reliable in estimating streamflow and simulating the water cycling processes for the structure of semi-arid areas. The simulated streamflow of HIMS was compared with those of the Variable Infiltration Capacity model (VIC) and Soil and Water Assessment Tool (SWAT) models and we found that the HIMS model performed better than the SWAT model, and had similar results to the VIC model with combined runoff generation mechanisms.


2019 ◽  
Vol 11 (7) ◽  
pp. 2031 ◽  
Author(s):  
Guangwen Shao ◽  
Danrong Zhang ◽  
Yiqing Guan ◽  
Yuebo Xie ◽  
Feng Huang

In the original soil and water assessment Tool (SWAT) model (SWAT-O), the contributions of shallow aquifers and deep aquifers to streamflow are simulated using the linear reservoir method. The movement of groundwater was limited in the hydrological response unit which is a minimum calculation unit in the SWAT. However, this computational method may not be suitable for the areas where a groundwater system is complicated, and the river is predominately recharged by groundwater. In this paper, we proposed an enhanced groundwater module which divides shallow aquifers into upper and lower aquifers, integrates all the deep aquifers of a sub-basin into a regional aquifer, and simulates interactive water amount between lower aquifer and deep aquifer using water depth difference. The modified groundwater module was introduced to the original SWAT model, hereby referred to as SWAT-MG. The SWAT-MG and SWAT-O models were applied to the Hailiutu River catchment, which is a semi-arid wind sandy grass shoal catchment. Results showed that both models underestimated streamflow in peak flow, while the simulated streamflow of SWAT-MG was closer the observed values than that of SWAT-O. Three evaluation criteria (NSE, RSR, PBIAS) were applied to evaluate the performance of the models and the results showed that SWAT-MG had a better performance than SWAT-O. The baseflow index of Hailiutu River which was calculated by the results of SWAT-MG was 96.78%, which means the streamflow is predominately recharged by groundwater, and this conforms to the actual situation of Hailiutu River catchment. This indicates that a SWAT model with a modified groundwater module could better represent the groundwater flow behavior in the study area.


Author(s):  
Abdata Galata

Modelling the hydrological characteristics of watershed is a method of understanding behavior and simulating the water balance components of watershed for planning and development of integrated water resources management. The soil and water assessment tool (SWAT) physically based hydrological modelling was used for modelling hydrologic characteristics of the Hangar watershed. The data used for this study were digital elevation model (DEM), land use land cover data, soil map, climatological and hydrological data. The model calibrated and validated using measured streamflow data of 13 years (1990-2002) and 9 years (2003-2011) respectively including warm-up period. The SWAT model performs well for both calibration (R2 = 0.87, NSE = 0.82 and PBIAS = +1.4) and validation (R2 = 0.89, NSE = 0.88 and PBIAS = +1.2). The sensitivity analysis, which was carried out using 18 SWAT parameters, identified the 13 most sensitive parameters controlling the output variable and with which goodness-of-fit was reached. The analysis results indicated that the watershed receives around, 9.6%, 59.9%, and 30.5% precipitation during dry, wet and short rainy seasons respectively. The received precipitation was lost by 9.6 %, 40.5%, and 41.3% in the form of evapotranspiration for each seasons correspondingly. The surface runoff contribution to the Watershed were 3.8%, and 79.2% during dry and wet seasons respectively, whereas, it contributes by 17.0% during short rainy seasons.


2021 ◽  
Author(s):  
Yifan Wu ◽  
Yang Xu ◽  
Guodong Yin ◽  
Xuan Zhang ◽  
Chong Li ◽  
...  

Abstract Applying various models to assess hydrologic ecosystem services (HESs) management has the potential to encourage efficient water resources allocation. However, can a single model designed on these principles be practical to carry out hydrologic ecosystem services management for all purposes? We address this question by fully discussing the advantages of the variable infiltration capacity (VIC) model, the soil and water assessment tool (SWAT), and the integrated valuation of ecosystem services and tradeoffs (InVEST) model. The analysis is carried both qualitatively and quantitatively at the Yixunhe River basin, China, with a semi-arid climate. After integrating the advantages of each model, a collaborated framework and model selection method have been proposed and validated for optimizing the HESs management at the data sparse scenario. Our study also reveals that the VIC and SWAT model presents the better runoff reproducing ability of the hydrological cycle. Though the InVEST model has less accuracy in runoff simulation, the interannual change rate is similar to the other two models. Furthermore, the InVEST model (1.08 billion m3) has larger simulation result than the SWAT model (0.86 billion m3) for the water yield, while both models have close results for sediment losses assessment.


Author(s):  
J. Y. G. Dos Santos ◽  
R. M. Da Silva ◽  
J. G. Carvalho Neto ◽  
S. M. G. L. Montenegro ◽  
C. A. G. Santos ◽  
...  

Abstract. This study aims to assess the impact of the land-use changes between the periods 1967−1974 and 1997−2008 on the streamflow of Tapacurá catchment (northeastern Brazil) using the Soil and Water Assessment Tool (SWAT) model. The results show that the most sensitive parameters were the baseflow, Manning factor, time of concentration and soil evaporation compensation factor, which affect the catchment hydrology. The model calibration and validation were performed on a monthly basis, and the streamflow simulation showed a good level of accuracy for both periods. The obtained R2 and Nash-Sutcliffe Efficiency values for each period were respectively 0.82 and 0.81 for 1967−1974, and 0.93 and 0.92 for the period 1997−2008. The evaluation of the SWAT model response to the land cover has shown that the mean monthly flow, during the rainy seasons for 1967−1974, decreased when compared to 1997−2008.


Sign in / Sign up

Export Citation Format

Share Document