scholarly journals Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region

2021 ◽  
Vol 13 (23) ◽  
pp. 13159
Author(s):  
Rafaela Tirado ◽  
Adélaïde Aublet ◽  
Sylvain Laurenceau ◽  
Mathieu Thorel ◽  
Mathilde Louërat ◽  
...  

Building demolition is one of the main sources of waste generation in urban areas and is a growing problem for cities due to the generated environmental impacts. To promote high levels of circular economy, it is necessary to better understand the waste-flow composition; nevertheless, material flow studies typically focus on low levels of detail. This article presents a model based on a bottom-up macro-component approach, which allows the multiscale characterization of construction materials and the estimation of demolition waste flows, a model that we call the BTP-flux model. Data mining, analytical techniques, and geographic information system (GIS) tools were used to assess different datasets available at the national level and develop a common database for French buildings: BDNB. Generic information for buildings in the BDNB is then enriched by coupling every building with a catalog of macro-components (TyPy), thus allowing the building’s physical description. Subsequently, stock and demolition flows are calculated by aggregation and classified into 32 waste categories. The BTP-flux model was applied in Île-de-France in a sample of 101,320 buildings for residential and non-residential uses, representative of the assessed population (1,968,242 buildings). In the case of Île-de-France, the building stock and the total demolition flows were estimated at 1382 Mt and 4065 kt, respectively. For its inter-regional areas—departments—, stock and demolition waste can vary between 85 and 138 tons/cap and 0.263 and 0.486 tons/cap/year, respectively. The mean of the total demolition wastes was estimated at 0.33 tons/cap/year for the region. Results could encourage scientists, planners, and stakeholders to develop pathways towards a circular economy in the construction sector by implementing strategies for better management of waste recovery and reintegrating in economic circuits, while preserving a maximum of their added value.

2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Santiago Rosado ◽  
Lidia Gullón ◽  
Luis Felipe Mazadiego Martínez ◽  
Juan Francisco Llamas Borrajo

Mining activity is the second biggest producer of waste in the European Union (EU), so to develop processes that allow the reuse of waste and the consequent creation of markets for these secondary raw materials are relevant for a desirable transition to a circular economy. Copper waste such as cakes, tailings, pyrite roasting residues, or slags present very different physical characteristics and hazards. There are two important aspects to consider for the residue of hazardous determination and its reuse: the particle size and the leaching behavior. Also, the reactive or non-reactive property of the waste depends on their origin, which is important for new applications. Based on these parameters (and other specifics for each application), the intention of this paper is to review and study the different applications of copper residues, aiming for new possibilities of cement-based construction materials with added value that allow to economically justify the use of cement.


2021 ◽  
Vol 13 (3) ◽  
pp. 1376
Author(s):  
Vincent Augiseau ◽  
Eunhye Kim

Urbanization causes massive flows of construction materials and waste, which generates environmental impacts and land-use conflicts. Circular economy strategies at a local scale and in coordination with urban planning could respond to those issues. Implementing these strategies raises challenges as it requires a better knowledge of flows and their space-differentiated drivers. This article focuses on the case of the Paris region (Ile-de-France) in 2013. Construction materials inflows and outflows to and from anthropogenic stocks of buildings and networks are estimated and located though a bottom-up approach based on the collection and processing of geolocalized data. Flow analysis focuses on the relationship between urbanization and flows with a view to establishing context-specific circular economy strategies. Results show that regional inflows of construction materials to stocks in 2013 reach between 1.8 and 2.1 t/capita while outflows are between 1.0 and 1.5 t/capita. Both inflows and outflows are mainly driven by building construction and demolition as well as by road renewal. The region is composed of three sub-urban areas and flows per capita in the dense central city of Paris are significantly lower than in the low-density outskirt area of Grande Couronne (GC). Road renewal accounts for a larger share of flows in GC. Future research will address methodological limits.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 388
Author(s):  
Faisal Aldebei ◽  
Mihály Dombi

Materials are continuously accumulating in the human-built environment since massive amounts of materials are required for building, developing, and maintaining cities. At the end of their life cycles, these materials are considered valuable sources of secondary materials. The increasing construction and demolition waste released from aging stock each year make up the heaviest, most voluminous waste outflow, presenting challenges and opportunities. These material stocks should be utilized and exploited since the reuse and recycling of construction materials would positively impact the natural environment and resource efficiency, leading to sustainable cities within a grander scheme of a circular economy. The exploitation of material stock is known as urban mining. In order to make these materials accessible for future mining, material quantities need to be estimated and extrapolated to regional levels. This demanding task requires a vast knowledge of the existing building stock, which can only be obtained through labor-intensive, time-consuming methodologies or new technologies, such as building information modeling (BIM), geographic information systems (GISs), artificial intelligence (AI), and machine learning. This review paper gives a general overview of the literature body and tracks the evolution of this research field.


2020 ◽  
Vol 12 (19) ◽  
pp. 7914 ◽  
Author(s):  
Pilar Mercader-Moyano ◽  
Paula M. Esquivias

In recent years, the building sector has been turning towards intervening in the existing city building stock. In fact, it is generally accepted that the refurbishment of buildings and the urban regeneration based on sustainability must form the axis of reformulation of the building sector. Nowadays, achieving sustainable urban development inevitably involves improving existing buildings, thereby preventing the need for city growth, and for the emptying of established neighbourhoods. Furthermore, considering the whole life cycle, it is well known the great amount of greenhouse emissions derived from the construction sector, so in order to reach a decarbonized society it is important to provide eco-efficient construction materials and solutions, adding the principles of circular economy and resource efficiency. The articles of this special issue show different aspects to be considered in order to reach a decarbonized and circular building stock.


2020 ◽  
Vol 15 (4) ◽  
pp. 155-172
Author(s):  
Francesco Pittau ◽  
Dayana Giacomel ◽  
Giuliana Iannaccone ◽  
Laura Malighetti

ABSTRACT In the building sector, new standards for energy efficiency are reducing the energy consumption and the carbon emissions for building operation to nearly zero. As a result, the greenhouse gas emissions and related environmental impacts from materials production, and especially insulation, are becoming key factors. In the near future, most of the building stock is expected to be refurbished and a great amount of construction materials will be consequently required. A relevant share of waste is generated from building construction and demolition and limiting the volume is a priority of the EU community. In this work the renovation of industrial buildings in a dismissed area located in Lecco, Italy, was considered as a case study. Five alternative construction systems (EPS, WOOD, ROCK, PU, HEMP) for renovating the building envelopes were assumed, and a life cycle assessment (LCA) adopted in order to measure the environmental impact of each alternative. The results were compared with a scenario which included demolition and reconstruction of a similar building with the same net volume and thermal resistance. The results showed that timber and concrete are the most environmentally friendly materials to rebuild the structures in case of demolition, contrary to steel which leads generally to higher environmental impacts, except land use. In general, EPS, WOOD and HEMP technological alternatives accounted for the highest scores, both in terms of burdens on the ecosystems and on depletion of resources, while ROCK accounted for the lowest scores. Finally, refurbishment scenarios generally accounted for a lower global warming potential (GWP) even if demolition, waste treatment and the benefit from recycling/reuse are taken into account.


2020 ◽  
Author(s):  
Lorenzo Carlos Quesada-Ruiz ◽  
Liliana Perez ◽  
Victor Rodriguez-Galiano ◽  
David Aragones

<p>The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This study investigates the spatiotemporal distribution of IL occurrence for 2000, 2006 and 2012 in two representative areas of Gran Canaria island: northwest (Zone A) and east (Zone B). The interannual growth rate of surfaces affected by ILs for the period between 2000 and 2006 was 4.5% and 9.5% and between 2006 and 2012 it was 6.6% and 6.7%, for Zone A and Zone B respectively. The growth of ILs between 2000 and 2006 was higher in urban areas, spaces under construction, and industrial zones, and may be closely related to the process of urban expansion linked to the real estate boom. The latter would have a deep impact on the landscape due to the proliferation of illegal construction and demolition waste. The growth rate of ILs in urban environments fell during the later period of urban expansion. Besides, this work shows the application of cellular automata (CA) in the analysis of IL occurrence, with ILs considered to be a dynamic and complex system. This may supply added value to policies for environmental repair and protection as well as territorial planning (land use and management), by delimiting possible future areas of IL occurrence. In this regard, IL occurrence was simulated over a long timescale (18 years), to estimate and spatially locate the surface growth of ILs based on CA-Markov and Multiobjective Land Allocation models. The modelling of IL proliferation was divided into three phases: calibration, validation and simulation of the future 2018 scenario. Synchronic data series were used, along with Markov chains and transition rules, in all phases. In the calibration phase the suitability analysis was done and the transition rules and transition potential maps were obtained. The use of dynamic characteristics such as those associated to land uses and static characteristics such as elevation and slope helped model the ILs’ growth. Models’ accuracy was assessed using Kappa index and landscape metrics. Simulation outputs were not highly accurate when reproducing the exact location of ILs, however, they did correctly reproduce the distribution patterns for IL proliferation. Obtaining the best validation results, the CA_Markov model was used to simulating IL proliferation in 2018, predicting that increases of 52.3 ha and 81.5 ha affected by ILs in Zone A and Zone B respectively.</p>


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8561
Author(s):  
Patrizia Ghisellini ◽  
Amos Ncube ◽  
Gianni D’Ambrosio ◽  
Renato Passaro ◽  
Sergio Ulgiati

In this study, our aim was to explore the potential energy savings obtainable from the recycling of 1 tonne of Construction and Demolition Waste (C&DW) generated in the Metropolitan City of Naples. The main fraction composing the functional unit are mixed C&DW, soil and stones, concrete, iron, steel and aluminium. The results evidence that the recycling option for the C&DW is better than landfilling as well as that the production of recycled aggregates is environmentally sustainable since the induced energy and environmental impacts are lower than the avoided energy and environmental impacts in the life cycle of recycled aggregates. This LCA study shows that the transition to the Circular Economy offers many opportunities for improving the energy and environmental performances of the construction sector in the life cycle of construction materials by means of internal recycling strategies (recycling C&DW into recycled aggregates, recycled steel, iron and aluminum) as well as external recycling by using input of other sectors (agri-food by-products) for the manufacturing of construction materials. In this way, the C&D sector also contributes to realizing the energy and bioeconomy transition by disentangling itself from fossil fuel dependence.


2020 ◽  
Vol 19 (4) ◽  
pp. 598-617 ◽  
Author(s):  
S.V. Ratner

Subject. The article considers the concept of circular economy, which has originated relatively recently in the academic literature, and is now increasingly recognized in many countries at the national level. In the European Union, the transition to circular economy is viewed as an opportunity to improve competitiveness of the European Union, protect businesses from resource shortages and fluctuating prices for raw materials and supplies, and a way to increase employment and innovation. Objectives. The aim of the study is to analyze the incentives developed by the European Commission for moving to circular economy, and to assess their effectiveness on the basis of statistical analysis. Methods. I employ general scientific methods of research. Results. The analysis of the EU Action Plan for the Circular Economy enabled to conclude that the results of the recent research in circular economy barriers, eco-innovation, technology and infrastructure were successfully integrated into the framework of this document. Understanding the root causes holding back the circular economy development and the balanced combination of economic and administrative incentives strengthened the Action Plan, and it contributed to the circular economy development in the EU. Conclusions. The measures to stimulate the development of the circular economy proposed in the European Action Plan can be viewed as a prototype for designing similar strategies in other countries, including Russia. Meanwhile, a more detailed analysis of barriers to the circular economy at the level of individual countries and regions is needed.


Author(s):  
Madeline Baer

Chapter 5 provides a case study of the human rights-based approach to water policy through an analysis of the Bolivian government’s attempts to implement the human right to water and sanitation. It explores these efforts at the local and national level, through changes to investments, institutions, and policies. The analysis reveals that while Bolivia meets the minimum standard for the human right to water and sanitation in some urban areas, access to quality water is low in poor and marginalized communities. While the Bolivian government expresses a strong political will for a human rights approach and is increasing state capacity to fulfill rights, the broader criteria for the right to water and sanitation, including citizen participation and democratic decision-making, remain largely unfulfilled. This case suggests political will and state capacity might be necessary but are not sufficient to fulfill the human right to water and sanitation broadly defined.


Sign in / Sign up

Export Citation Format

Share Document