scholarly journals Coupling and Coordination Analysis of Thermal Power Carbon Emission Efficiency under the Background of Clean Energy Substitution

2021 ◽  
Vol 13 (23) ◽  
pp. 13221
Author(s):  
Yujing Liu ◽  
Dongxiao Niu

With the proposed goals of reaching its “carbon peak” by 2030 and becoming “carbon neutral” by 2060, China will comprehensively build a diversified, efficient and clean energy system. The differences in China’s resource endowments have made the development of carbon emission reduction in the thermal power industry uncoordinated in various regions. Therefore, it is necessary to optimize the method for measuring thermal power carbon emission efficiency and determine the impact of regional development imbalances on the carbon emission efficiency of thermal power. For this article, we used the stochastic frontier analysis method and selected a variety of influencing factors as technical inefficiency items. After that, we measured the thermal power carbon emission efficiency in 30 provinces and municipalities (autonomous regions) in China in the past 10 years, and it was found that the efficiency was increasing yearly and showed obvious spatial differences. The impact of the clean energy substitution effect on the thermal power carbon emission efficiency cannot be ignored. After performing a coupled and coordinated analysis on the efficiency of thermal carbon emission in various regions and its influencing factors, the three indicators of power consumption intensity, urbanization level and clean energy substitution effect were selected. The weight of the indicator subsystem was determined in view of the estimation of the technical inefficiency. The results of the coupling and coordination analysis show that the degree of coupling and coordination of thermal power carbon emission efficiency is increasing yearly and presents a distribution of “high in the eastern region and low in the western region”. Therefore, all provinces need to vigorously carry out clean replacement work to enhance the coordinated development of carbon emission reduction in the thermal power industry and the level of regional economic development.

2021 ◽  
Author(s):  
Xiping Wang ◽  
Sujing Wang

Abstract As an effective tool of carbon emission reduction, emission trading has been widely used in many countries. Since 2013, China implemented carbon emission trading in seven provinces and cities, with iron and steel industry included in the first batch of pilot industries. This study attempts to explore the policy effect of emission trading on iron and steel industry in order to provide data and theoretical support for the low-carbon development of iron and steel industry as well as the optimization of carbon market. With panel data of China’s 29 provinces from 2006 to 2017, this study adopted a DEA-SBM model to measure carbon emission efficiency of China’s iron and steel industry (CEI) and a difference-in-differences (DID) method to explore the impact of emission trading on CEI. Moreover, regional heterogeneity and influencing mechanisms were further investigated, respectively. The results indicate that: (1) China's emission trading has a significant and sustained effect on carbon abatement of iron and steel industry, increasing the annual average CEI by 12.6% in pilot provinces. (2) The policy effects are heterogeneous across diverse regions. Higher impacts are found in the western and eastern regions, whereas the central region is not significant. (3) Emission trading improves CEI by stimulating technology innovation, reducing energy intensity, and adjusting energy structure. (4) Economic level and industrial structure are negatively related to CEI, while environmental governance and openness degree have no obvious impacts. Finally, according to the results and conclusions, some specific suggestions are proposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhipeng Li ◽  
Shuzhen Zhu ◽  
Xinyu Cao

Considering the multitargets of corporate carbon emission reduction and the fairness preference psychology of the company, a government incentive model for corporate carbon emission reduction was constructed. The impact of corporate fairness preferences on government carbon emission reduction incentive strategies is studied. In addition, numerical simulation is used to analyze the impact of changes in correlation coefficients, fairness preference coefficients, and discount rates on the optimal enterprise effort coefficient and the government optimal incentive coefficient. Research shows that the degree of fairness preference of a company has a direct impact on the degree of corporate effort, while the discount rate will only have an impact on the company’s long-term effort. In order to improve corporate carbon emission reduction efforts, the government must not only consider the impact of fairness preference on corporate efforts but also flexibly adjust the incentive coefficient of long-term and short-term tasks based on the discount rate.


2020 ◽  
Vol 154 ◽  
pp. 119961 ◽  
Author(s):  
Xinhua Zhang ◽  
Dongmei Gan ◽  
Yali Wang ◽  
Yu Liu ◽  
Jiali Ge ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 4380
Author(s):  
Xinyue Yang ◽  
Ye Song ◽  
Mingjun Sun ◽  
Hongjun Peng

We consider a capital constrained timber and carbon sink supply chain under the cap-and-trade scheme, where the forest company produces timber and carbon sink. We consider two subsidy modes: financing subsidy to the carbon sink forests and financing subsidy to the manufacturer’s emission reductions. We apply a Stackelberg model and mainly consider the impact of subsidies on the profits and the strategies of the supply chain members. The results show that when the government gives a financing subsidy to the carbon sink forests, it is conducive to promoting the expansion of carbon sink forests, as well as the enhancement of the forest company’s profit. However, a larger supply of carbon sinks generates a lower price, which leads to the manufacturer reducing the technical emission reduction level and purchasing more carbon emission rights instead. On the other hand, when the manufacturer receives a financing subsidy for the technical emission reduction costs, its production becomes cleaner than before, and the profits of the forest company and the manufacturer increase.


Author(s):  
Ailin Zhao ◽  
Mengxin Lan ◽  
Xiaochun Zhang ◽  
Ming Zeng ◽  
Chenjun Sun

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3081 ◽  
Author(s):  
Zeng ◽  
Lu ◽  
Liu ◽  
Zhou ◽  
Hu

With the challenge to reach targets of carbon emission reduction at the regional level, it is necessary to analyze the regional differences and influencing factors on China’s carbon emission efficiency. Based on statistics from 2005 to 2015, carbon emission efficiency and the differences in 30 provinces of China were rated by the Modified Undesirable Epsilon-based measure (EBM) Data Envelopment Analysis (DEA) Model. Additionally, we further analyzed the influencing factors of carbon emission efficiency’s differences in the Tobit model. We found that the overall carbon emission efficiency was relatively low in China. The level of carbon emission efficiency is the highest in the East region, followed by the Central and West regions. As for the influencing factors, industrial structure, external development, and science and technology level had a significant positive relationship with carbon emission efficiency, whereas government intervention and energy intensity demonstrated a negative correlation with carbon emission efficiency. The contributions of this paper include two aspects. First, we used the Modified Undesirable EBM DEA Model, which is more accurate than traditional methods. Secondly, based on the data’s unit root testing and cointegration, the paper verified the influencing factors of carbon emission efficiency by the Tobit model, which avoids the spurious regression. Based on the results, we also provide several policy implications for policymakers to improve carbon emission efficiency in different regions.


2019 ◽  
Vol 11 (16) ◽  
pp. 4387 ◽  
Author(s):  
Lin ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Shi ◽  
...  

The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the basis of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution routes with and without carbon emissions cost are constructed. Fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit.


Sign in / Sign up

Export Citation Format

Share Document