scholarly journals Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3081 ◽  
Author(s):  
Zeng ◽  
Lu ◽  
Liu ◽  
Zhou ◽  
Hu

With the challenge to reach targets of carbon emission reduction at the regional level, it is necessary to analyze the regional differences and influencing factors on China’s carbon emission efficiency. Based on statistics from 2005 to 2015, carbon emission efficiency and the differences in 30 provinces of China were rated by the Modified Undesirable Epsilon-based measure (EBM) Data Envelopment Analysis (DEA) Model. Additionally, we further analyzed the influencing factors of carbon emission efficiency’s differences in the Tobit model. We found that the overall carbon emission efficiency was relatively low in China. The level of carbon emission efficiency is the highest in the East region, followed by the Central and West regions. As for the influencing factors, industrial structure, external development, and science and technology level had a significant positive relationship with carbon emission efficiency, whereas government intervention and energy intensity demonstrated a negative correlation with carbon emission efficiency. The contributions of this paper include two aspects. First, we used the Modified Undesirable EBM DEA Model, which is more accurate than traditional methods. Secondly, based on the data’s unit root testing and cointegration, the paper verified the influencing factors of carbon emission efficiency by the Tobit model, which avoids the spurious regression. Based on the results, we also provide several policy implications for policymakers to improve carbon emission efficiency in different regions.

2021 ◽  
Author(s):  
Mengna Zhang ◽  
Lianshui Li ◽  
Zhonghua Cheng

Abstract The traditional data envelopment analysis (DEA) model usually ignores the influence of external environmental factors and random interference. This can easily lead to deviations in efficiency estimates. In order to solve this problem, a three-stage DEA model was used to better reflect the carbon emission efficiency of Chinese construction industry (CEECI) (2006–2017) from the perspective of non-management factors. The internal influencing factors of CEECI are analyzed by the Tobit model, which provides a more accurate basis for formulating policies. It is found that the CEECI is significantly affected by the GDP, the level of industrialization, the degree of opening-up, technological innovation and energy structure. After excluding environmental factors and random interference, the average CEECI increased by 16%. The resulting calculations were noteworthy in three aspects. First, there are significant regional differences in the CEECI. Both the multi-polarization phenomenon of CEECI and regional differences also reduced gradually over time. Second, the CEECI can be decomposed into pure carbon emission efficiency (PCEE) and scale efficiency (SE), which is mainly caused by SE. Excluding external environmental factors and random interference will have a specific impact on the CEECI. All the 30 provinces are divided into four categories to analyze the reasons and solutions of the differences in the CEECI in provinces. Third, many factors had inhibitory effects on the CEECI, PCEE and SE; these included energy structure optimization, labor force number, total power of construct ion equipment and construction intensity in the construction industry. Nevertheless, the development level of the construction industry did have a significant positive effect.


2020 ◽  
Vol 12 (4) ◽  
pp. 1402 ◽  
Author(s):  
Ya Chen ◽  
Wei Xu ◽  
Qian Zhou ◽  
Zhixiang Zhou

The phenomena of “large energy consumption, high carbon emission, and serious environmental pollution” are against the goals of “low energy consumption, low emissions” in China’s industrial sector. The key to solving the problem lies in improving total factor energy efficiency (TFEE) and carbon emission efficiency (TFCE). Considering the heterogeneity of different sub-industries, this paper proposes a three-stage global meta-frontier slacks-based measure (GMSBM) method for measuring TFEE and TFCE, as well as the technology gap by combining meta-frontier technology with slacks-based measure (SBM) using data envelopment analysis (DEA). DEA can effectively avoid the situation where the technology gap ratio (TGR) is larger than unity. This paper uses the three-stage method to empirically analyze TFEE and TFCE of Anhui’s 38 industrial sub-industries in China from 2012 to 2016. The main findings are as follows: (1) Anhui’s industrial sector has low TFEE and TFCE, which has great potential for improvement. (2) TFEE and TFCE of light industry are lower than those of heavy industry under group-frontier, while they are higher than those of heavy industry under meta-frontier. There is a big gap in TFEE and TFCE among sub-industries of light industry. Narrowing the gap among different sub-industries of light industry is conducive to the overall improvement in TFEE and TFCE. (3) The TGR of light industry is significantly higher than that of heavy industry, indicating that there are sub-industries with the most advanced energy use and carbon emission technologies in light industry. And there is a bigger carbon-emitting technology gap in heavy industry, so it needs to encourage technology spillover from light industry to heavy industry. (4) The total performance loss of industrial sub-industries in Anhui mainly comes from management inefficiency, so it is necessary to improve management and operational ability. Based on the findings, some policy implications are proposed.


2017 ◽  
Vol 87 (3) ◽  
pp. 1453-1468 ◽  
Author(s):  
Feng Dong ◽  
Ruyin Long ◽  
Zhengfu Bian ◽  
Xihui Xu ◽  
Bolin Yu ◽  
...  

2019 ◽  
Vol 11 (8) ◽  
pp. 2355 ◽  
Author(s):  
Wang ◽  
Wang ◽  
Zhang ◽  
Dang

We calculated provincial carbon emissions efficiency and related influencing factors in China with the purpose of providing a reference for other developing countries to develop a green economy. Using panel data covering the period from 2004–2016 from 30 provinces in China, we calculated the carbon emission performance (CEP) and the technology gap ratio of carbon emission (TGR) with the data envelopment analysis (DEA) method and the meta-frontier model separately to analyze provincial carbon emissions efficiency in China. No matter which indicator was employed, we found that distinct differences exist in the eastern, the central, and the western regions of China, and the eastern region has the highest carbon emission performance, followed by the central and the western regions. Then, the panel data Tobit regression model was employed to analyze the influencing factors of carbon emissions efficiency, and we found that scale economy, industrial structure, degree of opening up, foreign direct investment (FDI), energy intensity, government interference, ownership structure, and capital-labor ratio have different impacts on the carbon emission efficiency in different regions of China, which indicates different policies should be implemented in different regions.


2020 ◽  
Vol 12 (8) ◽  
pp. 3138 ◽  
Author(s):  
Jinkai Li ◽  
Jingjing Ma ◽  
Wei Wei

To promote economic and social development with reduced carbon dioxide emissions, the key lies in determining how to improve carbon emission efficiency (CEE). We first measured the CEE of each province by using the input-oriented three-stage Data Envelopment Analysis (DEA) and DEA-Malmquist model for the panel data of 30 provinces in China during 2000–2017. Then we explored the CEE differences and characteristics of different regions obtained by using hierarchical clustering of each province’s CEE. Finally, based on the regression model, we conducted an empirical analysis of the impact of each factor of total factor productivity (TFP) on CEE. The main findings of this research are as follows: (1) The industrial structure, energy structure, government regulation, technological innovation, and openness had a significant impact on CEE; (2) The variation trends of CEE and TFP in the eight regions we studied were convergent, while the variations of CEE among regions were diverse and all distributed stably in different ranges; (3) The eight regions’ efficiency basically showed a downward trend of eastern, central and western China; (4) Technological regression was the main reason for the decline in TFP. Technological progress and technological efficiency can contribute to an improvement in CEE. Based on the findings above, we provide decision-making references for comprehensively improving the efficiency of various regions and accelerating China’s energy conservation, emissions reduction, and coordinated development.


Author(s):  
Yue Pan ◽  
Gangmin Weng ◽  
Conghui Li ◽  
Jianpu Li

To discuss the coupling coordination relationship among tourism carbon emissions, economic development and regional innovation it is not only necessary to realize the green development of tourism economy, but also great significance for the tourism industry to take a low-carbon path. Taking the 30 provinces of China for example, this paper calculated the tourism carbon emission efficiency based on the super-efficiency Slacks based measure and Data envelope analyse (SBM-DEA) model from 2007 to 2017, and on this basis, defined a compound system that consists of tourism carbon emissions, tourism economic development and tourism regional innovation. Further, the coupling coordination degree model and dynamic degree model were used to explore its spatiotemporal evolution characteristics of balanced development, and this paper distinguished the core influencing factors by Geodetector model. The results showed that (1) during the study period, the tourism carbon emission efficiency showed a reciprocating trend of first rising and then falling, mainly due to the change of pure technical efficiency. (2) The coupling coordination degree developed towards a good trend, while there were significant differences among provinces, showing a gradient distribution pattern of decreasing from east to west. Additionally, (3) the core driving factors varied over time, however, in general, the influence from high to low were as follows: technological innovation, economic development, urbanization, environmental pollution control, and industrial structure. Finally, some policy recommendations were put forward to further promote the coupling coordination degree.


Sign in / Sign up

Export Citation Format

Share Document